بایگانی دسته: سنجش از دور

داده های HydroSHEDS GIS برای مدیریت آب

HydroSHEDS

HydroSHEDS یک منبع داده رایگان GIS برای مدیریت منابع آب و تصمیم گیری است. این پایگاه داده جامع اطلاعات دقیقی در مورد ویژگی های هیدرولوژیکی مانند حوزه های آبخیز، زیر حوضه ها، رودخانه ها، دریاچه ها، تصفیه خانه ها و آبشارها و همچنین ویژگی های مرتبط با آنها ارائه می دهد.

داده های HydroSHEDS می تواند به تصمیم گیری آگاهانه در مورد مدیریت، برنامه ریزی و توسعه منابع آب و همچنین شناسایی مناطق آسیب پذیر در برابر خطرات مرتبط با آب کمک کند. علاوه بر این، داده های HydroSHEDS GIS می تواند به ارزیابی اثرات تغییرات آب و هوایی بر منابع آب و بهبود تصمیم گیری کمک کند.

HydroSHEDS GIS Data چیست؟

داده های HydroSHEDS (داده ها و نقشه های هیدرولوژیکی بر اساس مشتقات ارتفاع شاتل در مقیاس های چندگانه) یک نمایش دیجیتالی از ویژگی های هیدرولوژیکی ، ویژگی های مرتبط با آنها و روابط فضایی آنها است.

این منبع داده شامل رودخانه‌ها، دریاچه‌ها، نهرها، بدنه‌های آبی و حوضه‌های آبی و همچنین اطلاعاتی در مورد مناظر اطراف و شرایط آب و هوایی است. داده‌های هیدرولوژیکی کل کره زمین را در بر می‌گیرد، که می‌توانید آن‌ها را در یک پایگاه داده جغرافیایی یا قالب فایل شکل دانلود کنید .

دریاچه های آبی

انواع داده های HydroSHEDS GIS

HydroSHEDS یک پایگاه داده جامع از اطلاعات هیدرولوژیکی و داده های GIS است که به منظور ارائه نقشه جهانی با کاربری آسان و دقیق از شبکه های زهکشی جهان و داده های مرتبط به کاربران طراحی شده است. همانطور که در زیر لیست شده است، در اینجا انواع مختلفی از داده های هیدرولوژیکی وجود دارد:

داده های هسته HydroSHEDS

داده های هسته نسخه 1 HydroSHEDS شامل یک DEM پر از فضای خالی، DEM شرطی شده، جهت جریان، تجمع جریان، طول جریان و ماسک زمین است. هر یک بر اساس SRTM 3 ثانیه قوس (90 متر) DEM است. اما می‌توانید نسخه‌های با وضوح پایین‌تر را در 15 و 30 ثانیه قوس دانلود کنید.

اگرچه این وضوح کمی درشت است، اما به زودی مجموعه داده های هسته HydroSHEDS با وضوح بالاتر به روز شده در دسترس خواهد بود. نسخه 2 HydroSHEDS به جای اینکه بر اساس SRTM باشد، از TanDEM-X DEM استفاده خواهد کرد. این بدان معنی است که وضوح می تواند تا 12 متر افزایش یابد.

1. HydroAtlas

HydroAtlas از مجموعه ای از ویژگی های آبی-محیطی زیرحوضه های جهانی تشکیل شده است. از طریق HydroATLAS، کاربران می توانند به ویژگی هایی مانند فیزیوگرافی، آب و هوا، پوشش زمین، خاک، زمین شناسی و تأثیرات محیطی دسترسی داشته باشند.

2. حوضه های آبی

HydroBasin مجموعه ای از محصولات داده مرزی زیرحوضه با مرجع جغرافیایی برای همه کشورها و حوضه های رودخانه در سراسر جهان است. این زیرحوضه های بدون درز را با وضوح 15 ثانیه قوس (تقریباً 450 متر) با استفاده از یک سیستم کدگذاری از 12 زیر حوضه تو در تو سلسله مراتبی ارائه می دهد.

3. HydroRIVERS

HydroRIVERS شامل رودخانه های بردار برای کل کره زمین است که از یک لایه DEM با وضوح 15 ثانیه قوس استخراج شده است. در مجموع، تقریباً 36 میلیون کیلومتر رودخانه را در سراسر جهان فراهم می کند، از جمله ویژگی هایی مانند نظم جریان و طول رودخانه.

آبگیرها

4. HydroLAKES

مجموعه داده HydroLAKES شامل دریاچه های جهانی با مساحت حداقل 10 هکتار است. در مجموع، این مجموعه داده شامل 1.4 میلیون دریاچه یا مخزن است. این مساحت 2.67 میلیون کیلومتر مربع یا حجم 181900 کیلومتر مربع را نشان می دهد.

5. HydroWASTE

مجموعه داده HydroWASTE مکان 58502 تصفیه خانه فاضلاب را در سراسر جهان فراهم می کند. این مجموعه داده با ادغام منابع داده های مختلف در سطح ملی و منطقه ای ایجاد شده است. با این حال، ویژگی ها فاقد جزئیات کلیدی مانند تعداد افرادی است که به آنها خدمات می دهد و سایر ویژگی ها.

6. طبقه بندی رودخانه های جهانی (GloRiC)

طبقه‌بندی جهانی رودخانه (GloRiC) شامل انواع رودخانه‌ها و طبقه‌بندی‌های فرعی از مجموعه داده HydroRIVERS است. به عنوان بخشی از این مجموعه داده، شما با ویژگی های فیزیکی اقلیمی و ژئومورفیک 8.5 میلیون رودخانه در سراسر جهان آشنا خواهید شد. 

7. HydroFALLS

مجموعه داده HydroFALLS شامل بیش از 4000 مکان آبشار است. هر کدام یا از راه دور یا در میدان تایید شده اند. منبع این داده ها از منابع ملی و منطقه ای است که در یک مجموعه داده نهایی ادغام شدند.

زباله های هیدرولیکی

مزایای داده های HydroSHEDS GIS

با استفاده از قدرت داده های HydroSHEDS G.I.S، مدیران منابع آب می توانند تصمیمات آگاهانه ای اتخاذ کنند که از منابع آب محافظت و حفظ کند و در عین حال توسعه پایدار را نیز ارتقا دهد. در اینجا برخی از مزایای استفاده از داده های HydroSHEDS G.I.S آورده شده است:

  • درک بیشتر از منابع آب – داده های HydroSHEDS می تواند به شناسایی منابع آب در یک منطقه، ویژگی های آبی-اکولوژیکی که بر آنها تأثیر می گذارد و سایر اطلاعات کلیدی کمک کند. همچنین می‌توانید از آن برای تجسم روابط بین آب‌های مختلف استفاده کنید و درک منابع آب و مسائل پیرامون آنها را آسان‌تر کنید.
  • تصمیم‌گیری بهبودیافته – هیدرولوژیست‌ها می‌توانند از این داده‌ها برای انجام مدیریت یکپارچه منابع آب در مقیاس حوضه (IWRM) و ارزیابی مدیریت منابع آب جایگزین یا سناریوهای توسعه استفاده کنند. همچنین می تواند به شناسایی مناطق آسیب پذیر در برابر خطرات مرتبط با آب کمک کند و از تصمیم گیری برای مدیریت سیل و خشکسالی حمایت کند.
  • ارزیابی اثرات تغییر اقلیم بر منابع آب – داده های HydroSHEDS می تواند به تعیین اینکه چگونه تغییرات آب و هوایی ممکن است بر منابع آب، استفاده از آنها و خدمات اکوسیستمی که ارائه می دهند تأثیر بگذارد کمک کند. همچنین می تواند به توسعه طرح های مدیریت منابع آب و شناسایی مناطقی که ممکن است نیاز به اصلاح داشته باشند کمک کند.

نتیجه

داده های HydroSHEDS یک منبع حیاتی از اطلاعات مکانی برای درک سیستم هیدرولوژیکی جهانی ما است. این شامل طیف گسترده ای از منابع داده، از رودخانه ها گرفته تا زیرحوضه ها و آبشارها است.

به طور کلی، HydroSHEDS می تواند به مدیران منابع آب کمک کند تا تصمیمات آگاهانه ای اتخاذ کنند که از منابع آب محافظت و حفظ کند و در عین حال توسعه پایدار را نیز ارتقا دهد.

Pansharpening در سنجش از دور چیست؟

Pansharpening چیست

Pansharpening چیست؟

هدف از Pansharpening در سنجش از دور دستیابی به بالاترین سطح وضوح بصری و جزئیات از یک تصویر است.

با ترکیب رزولوشن فضایی بالای تصاویر باند پانکروماتیک و طیف وسیع طیفی تصاویر چند طیفی (رنگی)، شفاف‌سازی تصویر رنگی نهایی با کیفیت واضح‌تر تولید می‌کند.

این راهنمای پان تیز کردن در سنجش از دور، مزایا و معایب پان تیز کردن و چند نکته برای موفقیت را پوشش می‌دهد. همچنین مروری بر نرم افزار مورد نیاز شما ارائه می دهد و در مورد کاربردهای pansharpening در تحقیقات و صنعت بحث می کند.

نمای کلی Pansharpening

نوار پانکروماتیک (سیاه و سفید) تصاویری با وضوح فضایی بالا و وضوح طیفی پایین است. در حالی که تصاویر چند طیفی (رنگی) تصاویری با وضوح فضایی پایین و وضوح طیفی بالا هستند .

با ترکیب این دو تصویر، می توانید یک تصویر نهایی ایجاد کنید که هم وضوح فضایی و هم وضوح طیفی بالایی داشته باشد و امکان نمایش دقیق تری از سطح زمین را فراهم می کند.

فرآیند pansharpening شامل اعمال یک الگوریتم ریاضی است به طوری که سلول های تصویر پانکروماتیک می توانند اطلاعات تفکیک مکانی را در سلول های تصویر چند طیفی افزایش دهند.

نتیجه پانشارپنینگ تصویری است که وضوح تصویر پانکروماتیک بالایی دارد. اما همچنان حاوی اطلاعات رنگی تصویر چند طیفی است. این کار شناسایی اشیاء در یک صحنه را آسان‌تر می‌کند، زیرا ویژگی‌ها هم راحت‌تر دیده می‌شوند و هم اطلاعات رنگی مرتبط با آنها وجود دارد.

مقایسه پان تیز کردن

مزایا و معایب Pansharpening

در اینجا برخی از مزایای اصلی پان تیز کردن آورده شده است:

1. افزایش جزئیات : با ترکیب وضوح فضایی بالای تصاویر PAN با اطلاعات طیفی تصاویر MS، pansharpening یک خروجی با وضوح طیفی و فضایی بالا تولید می کند. این اجازه می دهد تا تجزیه و تحلیل دقیق تری نسبت به هر نوع تصویری که به تنهایی ارائه دهد، ارائه دهد.

2. تجسم بهبود یافته : با افزایش جزئیات تصویر شفاف شده، کاربران می توانند به راحتی اشیا و ویژگی های داخل تصویر را شناسایی کنند. این می تواند برای کارهایی مانند نقشه برداری مفید باشد، جایی که تشخیص تک تک اشیاء در تصویر مهم است.

3. طبقه‌بندی آسان‌تر : جزئیات بیشتر و اطلاعات رنگی تصویر شفاف‌شده، امکان شناسایی دقیق‌تر اشیاء و ویژگی‌های درون تصویر را فراهم می‌کند و تخصیص آنها به کلاس‌های خاص را آسان‌تر می‌کند.

4. مقادیر طیفی ناسازگار : یکی از معایب pansharpening این است که حفظ یکپارچگی طیفی داده ها دشوار است. به عنوان مثال، معمولاً انجام آنالیز NDVI بر روی یک تصویر pansharpened پس از پردازش توصیه نمی شود.

تصویرسازی برای Pansharpening

تا زمانی که یک نوار پانکروماتیک وجود دارد، می توان پانکروماتیک را انجام داد. بنابراین اگر می‌خواهید از پان‌شارپنینگ استفاده کنید، باید بدانید کدام تصویر ماهواره‌ای حاوی نوار پانکروماتیک است. در اینجا چند نمونه از داده های سنجش از راه دور با باند پانکروماتیک آورده شده است:

صحنه لندست

Landsat-8 – ماموریت Landsat طولانی ترین آرشیو تصاویر ماهواره ای از سیاره ما است. داده ها 100٪ رایگان است و در USGS Earth Explorer موجود است . برای Landsat-8، نوار پانکروماتیک 8 با وضوح فضایی 15 متر. این اندازه پیکسل نصف نوارهای قرمز، سبز و آبی قابل مشاهده است که 30 متر هستند. برای اطلاعات بیشتر، در اینجا خلاصه ای از ترکیبات باند لندست آورده شده است .

Worldview-2 – Worldview-2 شامل 9 باند طیفی است. باندهای آئروسل ساحلی، آبی، سبز، زرد، قرمز، لبه قرمز و NIR دارای وضوح 1.85 متر هستند. نوار پانکروماتیک 0.45 متری این فرصت را فراهم می کند تا تصاویر را از طریق شفاف سازی با تصاویر Worldview واضح تر کنید .

SPOT-7 – اگرچه SPOT-7 فقط شامل 5 باند طیفی است، یکی از آنها نوار پانکروماتیک با GSD 1.5 متر است. 4 باند دیگر شامل آبی، سبز، قرمز و نزدیک به مادون قرمز در اندازه پیکسل 6 متر است.

نرم افزار Pansharpening

روش‌های مختلف و نرم‌افزار GIS برای تیز کردن وجود دارد. برخی از بسته های نرم افزاری طراحی شده برای پان تیز کردن عبارتند از:

ArcGIS Pro – هنگامی که تصاویر صحیح را داشتید، می توانید هر دو را به پروژه ArcGIS Pro خود اضافه کنید و سپس از ابزار Pansharpening پنجره تحلیل تصویر برای ترکیب آنها استفاده کنید. ابزار Pansharpening در ArcGIS Pro به شما امکان می دهد نوع الگوریتمی را که می خواهید برای ترکیب تصاویر استفاده کنید، مانند Brovey، Simple Mean یا IHS انتخاب کنید.

QGIS 3 – اگر از QGIS 3 استفاده می‌کنید ، pansharpening در جعبه ابزار پیش‌فرض موجود است. ابتدا می‌توانید از ابزار pansharpening از جعبه ابزار GRASS استفاده کنید، که گزینه‌ای برای Brovey، IHS و PCA در اختیار شما قرار می‌دهد. یا می توانید از ابزار pansharpening در جعبه ابزار GDAL استفاده کنید. اگرچه گزینه های زیادی با پانشارپنینگ GDAL دریافت نمی کنید، می توانید عمق بیت و روش نمونه برداری مجدد را تنظیم کنید.

ERDAS Imagine – ERDAS Imagine یک بسته نرم افزاری قدرتمند سنجش از دور و تجزیه و تحلیل تصویر است که توسط Hexagon Geospatial توسعه یافته است. Pansharpening بخشی از مجموعه اصلی ابزارهای شطرنجی ERDAS Imagine است. اگر می خواهید pansharpening را انجام دهید، ابزار “Pansharpening” را در برگه “Raster” پیدا کنید. از اینجا به بعد، باید از طریق ویزارد بروید و ورودی ها و خروجی های خود را تنظیم کنید.

کاربردها در تحقیق و صنعت

Pansharpening معمولاً در تحقیقات سنجش از دور و کاربردهای تجاری استفاده می شود که در آن تصاویر با وضوح بالا ضروری است. از آنجایی که وضوح بالا است، معمولاً آن را در برنامه‌های نقشه وب مانند Google Earth یا Apple Maps پیدا می‌کنید .

تیز شده

علوم زیست محیطی: در علوم محیطی، تصاویر شفاف می تواند به نظارت بر تغییرات پوشش زمین، ارزیابی منابع آب و شناسایی انواع پوشش گیاهی کمک کند.

برنامه ریزی شهری: در برنامه ریزی شهری، تصاویر شفاف برای مکان یابی ساختمان ها، جاده ها و سایر زیرساخت ها و همچنین برای ترسیم مراکز جمعیتی و روندهای توسعه استفاده می شود.

کشاورزی: ​​در کشاورزی، تصاویر تیز شده می توانند رشد و سلامت محصول و سایر نیازهای کشاورزی را کنترل کنند. 

نظامی و شناسایی: تصاویر Pansharpened همچنین در ارتش برای شناسایی و نظارت و همچنین برای نقشه برداری از زمین و شناسایی هدف استفاده می شود.

تجاری : در نهایت، تصاویر شفاف شده نیز به طور فزاینده ای در زمینه تجزیه و تحلیل جغرافیایی استفاده می شود. شرکت ها از این نوع تصاویر برای درک بهتر مشتریان خود، شناسایی فرصت های جدید بازار و کسب بینش عمیق تر در مورد عملیات تجاری خود استفاده می کنند.

خلاصه و نتیجه گیری

تصاویر Pansharpened نوعی از تصاویر ماهواره ای است که تصاویر پانکروماتیک (سیاه و سفید) و چند طیفی (رنگی) را برای ایجاد تصویری با وضوح بالاتر و جزئیات بیشتر ترکیب می کند.

ما از این نوع تصاویر در کاربردهای مختلفی از علوم محیطی گرفته تا برنامه ریزی شهری و کشاورزی استفاده می کنیم.

می‌توانید در نرم‌افزارهایی مانند ArcGIS Pro، QGIS 3، ERDAS Imagine و سایر نرم‌افزارهای GIS از Pansharpenاستفاده کنید.

Udemy vs Udacity: کدام یک بهترین است؟

U demy vs Udacity: کدام آموزش الکترونیکی بهترین است؟

کمربندت رو ببند. زیرا امروز، این مسابقه بین دو تا از بهترین ارائه دهندگان آموزش آنلاین برای مهارت های فنی است. U demy vs Udacity !

در گوشه ای، Udacity را داریم، شرکتی که استعدادهای دیجیتالی آماده کار را از نانودگره های خود تولید می کند.

…و در گوشه دیگر، Udemy است. Udemy در همه چیز یک دوره دارد. اما بهتر از همه، دوره های آن عملی و با قیمت مناسب است. 

در این مقاله، مزایا و معایب U demy vs Udacity را بررسی می‌کنیم . کدام یک برای نیازهای شما بهتر است؟ بیایید برای غرش آماده شویم.

در یک جمله؟

مشکلی نیست در پایان روز، اگر به دنبال مقرون به صرفه بودن، انتخاب دوره و پشتیبانی زبان هستید، باید Udemy را انتخاب کنید. اما اگر به دنبال مشاوره، پشتیبانی شغلی، دوره های با کیفیت بالا و پروژه های واقعی هستید، Udacity بهترین انتخاب برای شما است.

ماموریت های فضایی ناسا منابع انتشار CO2 در زمین را مشخص می کند

فضا
نورها آسمان شب را در این تصویر از اروپا، از جمله لهستان، که از ایستگاه فضایی بین المللی گرفته شده است، درخشان می کنند. در آزمایشگاه مدارگرد OCO-3 ناسا قرار دارد، ابزاری که می تواند برای ردیابی تغییرات انتشار دی اکسید کربن در مقیاس محلی استفاده شود.

یک مطالعه موردی شامل بزرگترین نیروگاه زغال سنگ اروپا نشان می دهد که مشاهدات فضایی می توانند برای ردیابی انتشار دی اکسید کربن – و کاهش – در منبع استفاده شوند. دو مأموریت رصد زمین، محققان را قادر می‌سازد تا تغییرات انتشار دی‌اکسید کربن (CO2) را از یک تأسیسات، با استفاده از پنجمین نیروگاه بزرگ زغال‌سنگ جهان به عنوان نمونه آزمایشی، شناسایی و ردیابی کنند.

در مطالعه اخیر، محققان از اندازه‌گیری‌های مبتنی بر فضا از رصدخانه کربن مداری ناسا (OCO) 2 و 3 برای تعیین کمیت دی اکسید کربن تخلیه‌شده صدها مایل پایین‌تر در ایستگاه برق Bełchatów در لهستان، بزرگ‌ترین انتشار دهنده منفرد در اروپا، استفاده کردند. آنها با تجزیه و تحلیل ستون های انتشاری نیروگاه از چندین روگذر ماهواره ای بین سال های 2017 تا 2022، تغییراتی را در سطوح دی اکسید کربن شناسایی کردند که با نوسانات ساعتی تولید برق مطابقت داشت. تعطیلی موقت و دائمی واحد (برای تعمیر و نگهداری یا از کار انداختن) انتشار کلی کارخانه را کاهش داد، که تیم توانست آن را نیز تشخیص دهد.

به گفته دانشمندان، یافته ها نشان می دهد که مشاهدات مبتنی بر فضا می تواند برای ردیابی تغییرات انتشار دی اکسید کربن در مقیاس محلی استفاده شود.

این تصویر، ماهواره OCO-2 ناسا را نشان می‌دهد که در سال 2014 پرتاب شد. در حین گردش به دور زمین، این فضاپیما از انتشار دی‌اکسید کربن طبیعی و ساخته‌شده توسط انسان در مقیاس‌های مختلف از مناطق تا قاره‌ها نقشه‌برداری می‌کند. طیف‌سنج‌های آنالیز نور برای تشخیص نشانه‌های گاز تنظیم شده‌اند.

ماهواره OCO-2 ناسا که در سال 2014 پرتاب شد، از انتشار دی اکسید کربن طبیعی و ساخت انسان (انسانی) در مقیاس های مختلف از منطقه تا قاره نقشه برداری می کند. این ابزار به طور غیرمستقیم با اندازه گیری شدت نور خورشید که از سطح زمین منعکس شده و توسط دی اکسید کربن موجود در ستون هوا از زمین به ماهواره جذب می شود، از گاز نمونه برداری می کند. طیف‌سنج‌های OCO-2 برای تشخیص علامت خاص گاز CO2 تنظیم شده‌اند.

اجزای یدکی آن ماموریت برای ایجاد OCO-3، ابزاری که از سال 2019 در ایستگاه فضایی بین‌المللی پرواز کرده است، استفاده شد. به محققان این امکان را می دهد تا نقشه های کوچک دقیقی از یک منطقه مورد علاقه در مقیاس شهر ایجاد کنند.

آبیشک چاترجی، دانشمند پروژه ماموریت OCO-3 در آزمایشگاه پیشرانه جت ناسا در جنوب کالیفرنیا، گفت که هیچ یک از ابزارهای OCO در ابتدا به طور خاص برای تشخیص انتشار گازهای گلخانه ای از تأسیسات فردی مانند بلچاتوف طراحی نشده بودند، بنابراین یافته های جدید یک “سورپرایز خوشایند” است. او افزود: «به عنوان یک جامعه، ابزارها و تکنیک‌ها را اصلاح می‌کنیم تا بتوانیم اطلاعات بیشتری از آنچه در ابتدا برنامه‌ریزی کرده بودیم، از داده‌ها استخراج کنیم». ما در حال یادگیری هستیم که در واقع می‌توانیم در مورد انتشارات انسانی خیلی بیشتر از آنچه قبلاً انتظار داشتیم درک کنیم.»

این تصویر OCO-3 ناسا را نشان می دهد که در قسمت زیرین ایستگاه فضایی بین المللی نصب شده است. این ابزار که در سال 2019 راه اندازی شد، در اصل برای تشخیص انتشار دی اکسید کربن از تأسیسات فردی طراحی نشده بود، اما دانشمندان گفتند که در آینده برای مطالعات منبع نقطه ای بیشتری از آن استفاده خواهد شد.

ردیابی کربن در آینده

انتشار گازهای گلخانه ای از تاسیسات بزرگ مانند نیروگاه ها و پالایشگاه ها حدود نیمی از انتشار دی اکسید کربن جهانی از سوخت های فسیلی را تشکیل می دهد. نیروگاه Bełchatów که از سال 1988 در حال فعالیت است، بزرگترین نیروگاه با سوخت زغال سنگ در جهان است که ظرفیت آن 5102 مگاوات گزارش شده است. زغال سنگ قهوه ای (زغال سنگ قهوه ای) معمولاً منجر به انتشار بیشتر در هر مگاوات تولید شده نسبت به آنتراسیت (زغال سنگ سخت) می شود. دولت لهستان پیش نویس برنامه هایی را برای تعطیلی کارخانه تا پایان سال 2036 تهیه کرده است.

ری نصار، محقق ارشد محیط زیست و تغییرات آب و هوایی کانادا و نویسنده اصلی این مطالعه، خاطرنشان کرد که بیشتر گزارش‌های انتشار دی اکسید کربن از تخمین‌ها یا داده‌های جمع‌آوری‌شده در سطح زمین ایجاد می‌شوند. محققان حجم سوخت های فسیلی خریداری شده و مورد استفاده را محاسبه می کنند، سپس انتشارات مورد انتظار را محاسبه می کنند. آنها معمولاً اندازه گیری دی اکسید کربن اتمسفر واقعی را انجام نمی دهند.

نصار گفت: «جزئیات دقیق‌تر درباره زمان و مکان دقیق انتشار گازهای گلخانه‌ای اغلب در دسترس نیست. ارائه تصویری دقیق تر از انتشار دی اکسید کربن می تواند به ردیابی اثربخشی سیاست های کاهش انتشار کمک کند. رویکرد ما با OCO-2 و OCO-3 می تواند در نیروگاه های بیشتری اعمال شود یا برای انتشار دی اکسید کربن از شهرها یا کشورها اصلاح شود.

به دلیل مشاهدات حالت نقشه برداری OCO-3، داده های ناسا می تواند به طور گسترده تری در تعیین کمیت انتشار منبع نقطه ای CO2 در آینده استفاده شود. ناسا اخیراً اعلام کرد که عملیات ماموریت برای چندین سال دیگر در ایستگاه فضایی تمدید خواهد شد و این ابزار در کنار ناظر گازهای گلخانه ای دیگر در ایستگاه فضایی به نام تحقیق منبع غبار معدنی سطح زمین (EMIT) کار خواهد کرد.

چاترجی گفت: “این واقعاً هیجان انگیز است که فکر کنیم پنج تا شش سال دیگر با OCO-3 عملیات خواهیم داشت.” ما می بینیم که انجام اندازه گیری در زمان مناسب و در مقیاس مناسب بسیار مهم است.

او افزود که OCO-3 می تواند به عنوان یک “مسیر یاب” برای ماموریت های ماهواره ای نسل بعدی عمل کند. پروژه های OCO-2 و OCO-3 توسط JPL مدیریت می شوند. Caltech JPL را برای ناسا مدیریت می کند.

بررسی پیامدهای فوران آتشفشان تونگا؛ نگاهی دقیق به تاثیرات آن در زیر دریا

نویسنده: Ben Simpson, Jamie McMichael-Phillips 

پروژه نقشه برداری بستر فوران تونگا (TESMaP) یک ماموریت مشترک برای کشف اثرات زیر دریای فوران آتشفشان هونگا-تونگا هونگا-هااپای در ژانویه 2022 است. موسسه ملی تحقیقات آب و جو نیوزیلند (NIWA) و بنیاد نیپون ژاپن با استفاده از دانش، تجربه و منابع جمعی خود امیدوارند که بفهمند چه اتفاقی افتاده است، چه مقدار مواد جابجا شده است و آتشفشان به چه شکلی باقی مانده است. کمک به بهبود پیش‌بینی سونامی و پیش‌بینی بهتر اثرات انفجار آتشفشان‌های زیردریایی، که به نوبه خود به محافظت از مردم در برابر بلایای طبیعی مشابه در آینده کمک می‌کند.

در 15 ژانویه 2022، یک کشور اقیانوس آرام جنوبی با بیش از 104000 نفر شاهد فوران غیرمنتظره و بی سابقه آتشفشان هونگا-تونگا هونگا-هااپای (HT-HH) بود. تاثیر فوری عواقب فاجعه باری برای جزایر مجاور تونگا داشت. جزیره اصلی Tongatapu با خاکستر سمی فرش شده بود و رونق صوتی در سراسر جهان سفر کرد. شکل بستر دریا بر سرعت و اندازه سونامی حاصل تأثیر زیادی داشت.

مرگ و میر و خسارت تا آمریکای جنوبی ثبت شد و امواج استرالیا، نیوزلند و ژاپن را درنوردید و حتی سواحل کالیفرنیا، آلاسکا و شیلی را لمس کرد. همچنین کابل‌های فیبر نوری زیردریایی را که تونگا را به جهان متصل می‌کرد، قطع کرد و این کشور را در خاموشی طولانی‌مدت قرار داد.

در آوریل 2022، مؤسسه ملی تحقیقات آب و جو نیوزیلند (NIWA) و بنیاد نیپون ژاپن، مأموریت مشترکی را برای کشف اثرات زیردریایی انفجار، با استفاده از دانش، تجربه و منابع جمعی خود برای ایجاد تصویری دقیق و ارزشمند اعلام کردند. از پیامدهای فوران در زیر سطح اقیانوس.

پروژه نقشه برداری بستر فوران تونگا (TESMaP) توسط بنیاد نیپون تامین می شود و توسط The Nippon Foundation-GEBCO Seaabed 2030 Project، که هدف آن نقشه برداری از کل کف اقیانوس جهان تا سال 2030 و ارائه این اطلاعات از طریق یک نقشه قطعی رایگان است، پشتیبانی می شود.

آتشفشان
نمای هوایی از آتشفشان هونگا-تونگا هونگا-هاآپای (HT-HH). (تصویر با حسن نیت ارائه شده: تیم نظرسنجی SEA-KIT NIWA-Nippon Foundation TESMaP)

مدل سازی فوران های آینده

در حال حاضر حدود 680 میلیون نفر در مناطق ساحلی زندگی می کنند و انتظار می رود این رقم در کمتر از 30 سال به یک میلیارد نفر افزایش یابد. این جوامع ساحلی با خطر فزاینده طوفان و سونامی روبرو هستند که می تواند کل محله ها را از بین ببرد و زندگی را در عرض چند دقیقه به خطر بیندازد. از آنجایی که آتشفشان‌های مشابه متعددی در سرتاسر جهان وجود دارد، به‌ویژه در امتداد حلقه آتش اقیانوس آرام، فوران HT-HH یک خطر حیاتی برای جامعه را برجسته می‌کند که با کمبود دانش تشدید می‌شود.

از طریق تحقیقات و بررسی های دقیق، گسترش دانش جمعی از توپوگرافی زیر دریا برای درک آنچه اتفاق افتاده، چه مقدار مواد جابجا شده است و چه شکلی آتشفشان باقی مانده حیاتی است. این اطلاعات امکان بهبود پیش بینی سونامی و پیش بینی بهتر اثرات انفجار را فراهم می کند. آتشفشان های زیر دریا، که به نوبه خود به محافظت از مردم در برابر بلایای طبیعی مشابه در آینده کمک می کند.

در فاز یک TESMaP که بین آوریل و مه انجام شد، دانشمندان نیوا در کشتی تحقیقاتی RV Tangaroa اقیانوس اطراف HT-HH را بررسی کردند که هزاران کیلومتر مربع را پوشش می‌دهد و تصاویر ویدیویی از برخورد فوران جمع‌آوری می‌کند. فاز دوم، که بین ژوئیه و آگوست انجام شد، از کشتی 12 متری بدون سرنشین (USV) Maxlimer SEA-KIT International برای انجام یک ماه نقشه برداری بیشتر در داخل دهانه دهان استفاده کرد. این تحقیق – که در منطقه ای انجام شده است که به دلایل ایمنی نمی تواند توسط NIWA بررسی شود – برای یافته های کلی پروژه بسیار مهم است.

SEA-KIT USV Maxlimer در حال آماده شدن برای اعزام به تونگا.

مواد جابجا شده

با توجه به بزرگی شدید انفجار، تغییرات چشمگیری در آتشفشان قابل انتظار بود. اما در عوض، محققان کشتی RV Tangaroa برای این سفر یک ماهه از یافتن آن هنوز تا حد زیادی دست نخورده شگفت زده شدند. دانشمندان نیوا در مجموع 22000 کیلومتر مربع از بستر دریای اطراف را نقشه برداری کردند و تغییراتی را در مساحت 8000 کیلومتر مربع مشاهده کردند.

آنها تا هفت کیلومتر مکعب مواد جابجا شده را ثبت کردند – برای پر کردن سه میلیون استخر شنای المپیک کافی است. کابل اینترنت خانگی قطع شده تونگا در زیر 30 متر خاکستر و رسوب مدفون شد و دانشمندان گل شنی و امواج عمیق خاکستر را تا 50 کیلومتری آتشفشان پیدا کردند.

تأثیرات اکوسیستم

تأثیرات روی اکوسیستم نیز مورد بررسی قرار گرفت. این آتشفشان فاقد بیولوژی بود، اما به طور قابل توجهی ویژگی هایی در فاصله 15 کیلومتری وجود داشت که هنوز دارای جمعیت های فراوان و متنوعی از حیات دریایی بود. کوه‌های دریایی اطراف دارای تنوع زیستی معمولی مانند مرجان‌ها، اسفنج‌ها، ستاره‌های دریایی و صدف‌ها بودند که نشان‌دهنده انعطاف‌پذیری چنین اکوسیستم‌های دریایی است و به دانشمندان مبنایی برای نظارت بر بازیابی در آینده می‌دهد.

داده های اولیه ستون آب نشان داد که هنوز در حال بهبود است و مقداری خاکستر معلق در هوا هنوز به طور کامل در کف دریا ته نشین نشده است. همچنین شواهدی وجود دارد که نشان می دهد آتشفشان ممکن است همچنان در حال فوران باشد، با یک لایه خاکستر متراکم که در ستون آب بالایی نزدیک محل یافت می شود.

USV Maxlimer در تونگا.

نقشه برداری شکاف ها با USV

به عنوان بخشی از فاز دو، USV Maxlimer شکل فعلی دهانه دهان را ترسیم کرد و شرایط محیطی آب بالای آن را اندازه‌گیری کرد، در حالی که همه این‌ها از راه دور از پایگاه SEA-KIT در بریتانیا، در فاصله 16000 کیلومتری، کنترل می‌شدند. استفاده از USV Maxlimer به عنوان یک پلتفرم قابل تنظیم برای طیف وسیعی از حسگرها، فرصتی منحصر به فرد برای جمع آوری داده ها به طور ایمن و پیوسته از داخل دهانه دهان در طول یک ماه کامل فراهم کرد

. در طول این ماموریت، USV Maxlimer فقط 100 لیتر سوخت در روز مصرف کرد که کمتر از 2 درصد مصرف سوخت یک کشتی معمولی است. علاوه بر کاهش خطر برای مردم، استقرار یک USV برای بررسی در داخل دهانه دهان باعث می شود انتشار کربن برای پروژه کم باقی بماند.

این اولین باری بود که از یک یو اس وی برای این نوع ماموریت استفاده شد و نشان داد که چگونه این فناوری راه‌های جدیدی را برای درک اقیانوس‌های ما پیش‌گام است. Maxlimer، اولین SEA-KIT X-class USV، کشتی آزمایش و توسعه این شرکت است.

او بخشی از برنده جایزه Nippon Foundation-GEBCO در نمایشگاه Shell Ocean Discovery XPRIZE در سال 2019 بود و از آن زمان به «اولین‌های» متعددی دست یافت، از جمله اولین بازرسی خط لوله دریایی بدون خدمه و اولین ترانزیت تجاری بین‌المللی بدون خدمه در سال 2019. USV همچنین 22 روز کار را به پایان رساند. عملیات بررسی از راه دور در حاشیه قاره اروپا در سال 2020، نقشه برداری بیش از 1000 کیلومتر مربع از کف اقیانوس.

جمع آوری داده ها در زمان واقعی

سنسورهای موجود در عرشه داده‌های عمق سنجی، داده‌های پراکندگی پشتی ستون آب، سرعت صوت، رسانایی، دما، کدورت، کاهش اکسیداسیون، فشار با عمق و داده‌های جاری را جمع‌آوری کردند، که همگی درک تأثیر زیردریایی فوران و فعالیت‌های مداوم را توسعه داده و پشتیبانی می‌کنند.

USV از قابلیت وینچ تازه نصب شده برای فرورفتگی حسگرها و یدک‌ها برای جمع‌آوری داده‌های ستون آب تا عمق 300 متری و ارائه نگاه دقیق‌تری به لایه رسوب معلق استفاده کرد. این مجموعه داده‌های اقیانوس‌شناسی به شناسایی لایه‌های فعالیت زمین گرمایی و همچنین تغییر در شوری و ذرات محلول کمک می‌کند و برای مطالعات مقایسه‌ای با نمونه‌های جمع‌آوری‌شده در خارج از دهانه دهان توسط RV Tangaroa استفاده خواهد شد.

Maxlimer به همراه سه عضو تیم SEA-KIT حدود 40 روز در Nuku’alofa، تونگا مستقر بودند. در طول این مدت، کشتی همچنین برای استفاده برای بررسی‌های زیست‌محیطی قبل از کابل‌گذاری جدید احتمالی برای اتصال مجدد جزایر، و همچنین برای نقشه‌برداری از آتشفشان‌های دیگر در منطقه و ایجاد نقشه‌های تغییر از فوران‌های قبلی در دسترس بود.

SEA-KIT USV Maxlimer در حال بازگشت از Caldera HT-HH در تونگا.

اتحاد مجدد صنعت ژئوفضایی؛ بازگشت به تجارت در Intergeo

نوشته: Wim van Wegen 

حال و هوای Intergeo 2022 تقریباً شبیه به دوران قبل از همه‌گیری بود و طیف گسترده‌ای از راه‌حل‌های سخت‌افزاری و نرم‌افزاری نوآورانه به نمایش درآمد. صنعت زمین فضایی به وضوح به تجارت بازگشته است! علاوه بر این، با تعداد بسیار زیاد شرکت‌هایی که قبلاً برای نمایشگاه سال آینده ثبت‌نام کرده‌اند، به نظر می‌رسد همه سیستم‌ها به دنبال یک Intergeo 2023 حتی بزرگتر و بهتر در برلین هستند.

Intergeo 2022 اولین نسخه حضوری از زمانی بود که COVID-19 جهان را به بن بست رساند، بنابراین بسیاری از علاقه مندان به زمین فضایی برای مدت طولانی منتظر آن بودند. و بر اساس حال و هوای مرکز نمایشگاه در اسن در طول سه روز این رویداد، آنها به وضوح ناامید نشدند، زیرا جو در نمایشگاه تجاری و کنفرانس پیشرو در جهان برای حرفه نقشه برداری و نقشه برداری تقریباً شبیه به زمان های همه گیر قبل بود.

در حالی که نسخه امسال این رویداد رسماً به عنوان یک نسخه ترکیبی توصیف شد، در واقع می توان آن را به عنوان یک گام بزرگ در جهت بازگشت همه چیز به حالت عادی دانست. با این اوصاف، کووید-19 به وضوح آثاری از خود بر جای گذاشته است، زیرا تعدادی از غرفه‌داران با غرفه‌های کوچک‌تری نسبت به سال‌های گذشته حضور داشتند. محدودیت آنها قابل درک است، زیرا عدم اطمینان مداوم در جهان باعث شده است که بسیاری از مشاغل دو بار در مورد بودجه و تصمیمات سرمایه گذاری فکر کنند.

برای دیدن سخت افزار، نرم افزار و همتایان هیجان زده هستم

با این حال، به محض اینکه Intergeo 2022 درهای خود را در اسن، دومین شهر بزرگ در منطقه روهر، که بزرگترین منطقه شهری آلمان است و قلب تپنده Wirtschaftswunder (معجزه اقتصادی) آلمانی بود، به سرعت راه را برای هیجان باز کرد. دهه 1950 و 1960 برای بسیاری از تقریباً 14000 بازدیدکننده، یکی از دلایل کلیدی برای شرکت به وضوح ملاقات با دوستان قدیمی (و جدید) و در نهایت دیدن همتایان خود در جامعه ژئوماتیک در زندگی واقعی بود، که البته بسیار لذت بخش تر است. از تلاش برای تعامل روی صفحه نمایش این امر قطعا به فضای پرنشاطی که فضای سالن های نمایشگاه را پر کرده بود افزود.

اتحاد مجدد صنعت زمین فضایی
بازگشت به تجارت در Intergeo
حال و هوای Intergeo 2022 تقریباً شبیه به دوران قبل از همه‌گیری بود و طیف گسترده‌ای از راه‌حل‌های سخت‌افزاری و نرم‌افزاری نوآورانه به نمایش درآمد. صنعت زمین فضایی به وضوح به تجارت بازگشته است! علاوه بر این، با تعداد بسیار زیاد شرکت‌هایی که قبلاً برای نمایشگاه سال آینده ثبت‌نام کرده‌اند، به نظر می‌رسد همه سیستم‌ها به دنبال یک Intergeo 2023 حتی بزرگتر و بهتر در برلین هستند.
به محض اینکه Intergeo 2022 درهای خود را در Essen باز کرد، هر تردیدی به سرعت جای خود را برای هیجان باز کرد. (ارسالی از: Fokuspokus Media)

نیازی به گفتن نیست که Intergeo 2022 بسیار بیشتر از فرصتی برای ملاقات حضوری با افراد بود. همچنین مکان مناسبی برای دریافت به‌روزرسانی عمده در مورد آخرین راه‌حل‌های سخت‌افزاری و نرم‌افزاری بود که باعث رشد صنعت زمین‌فضایی می‌شوند، از راه‌حل‌های نقشه‌برداری زمینی گرفته تا وسایل نقلیه هوایی بدون سرنشین (پهپادها یا پهپادها) و سایر راه‌حل‌های خودکار برای ثبت واقعیت جهان.

بازدیدکنندگان همچنین می‌توانند نمونه‌های متعددی را ببینند که چگونه سیستم‌های اطلاعات جغرافیایی پیشرفته امروزی و راه‌حل‌های مدل‌سازی اطلاعات ساختمان (BIM) پتانسیل خود را در تجزیه و تحلیل داده‌ها، نظارت و پشتیبانی تصمیم‌گیری آشکار می‌کنند. امسال تمرکز ویژه‌ای روی دوقلوهای دیجیتالی شد که به طور فزاینده‌ای برای زنده کردن مدل‌های استاتیک با اطلاعات پویا و هم‌زمان و شبیه‌سازی سناریوهای گسترده در واقعیت منعکس‌شده‌شان استفاده می‌شوند. در مورد دوقلوهای دیجیتال، شهر میزبان سال آینده Intergeo در حال حاضر روی یک مورد استفاده واقعی جالب کار می کند.

در یک پروژه بازسازی که قرار است یک سایت 73 هکتاری را به یک منطقه شهری مدرن به نام میدان زیمنس‌اشتات تبدیل کند، جدیدترین محله برلین دو بار “ساخته” خواهد شد: ابتدا در دنیای دیجیتال و سپس در دنیای واقعی. یک دوقلو دیجیتال جامع به عنوان پایه ای برای ساخت و ساز و عملیات بعدی کل منطقه عمل خواهد کرد.

دوقلوهای دیجیتال و متاورس

دوقلوهای دیجیتال نیز در کنفرانس مطبوعاتی سنتی در دومین روز از Intergeo در کانون توجه قرار گرفتند. یکی از سخنرانان هانسیورگ کوترر بود که از ژانویه 2023 به بعد توسط رودولف استایگر به عنوان رئیس انجمن ژئودزی، اطلاعات جغرافیایی و مدیریت زمین آلمان (DVW) جانشین وی شد.

کوترر اظهار داشت که زمین به سرعت در حال تغییر است و ما نیاز به نقشه برداری، مدل سازی و اجرای شبیه سازی ها به عنوان مبنایی برای بحث و تحلیل سناریو داریم تا از تصمیمات آگاهانه در سطح مورد نیاز حمایت کنیم. او توضیح داد که حرفه ژئوماتیک یک بازیگر اصلی در این است، که همچنین از ما می‌خواهد بزرگ فکر کنیم و دیدگاه‌ها و شایستگی‌های مختلف خود را در چیزی بزرگ‌تر ادغام کنیم.

کاترر با «چیزی بزرگتر» به متاورس اشاره می کرد که در رویداد امسال یک کلمه رایج بود. اگرچه ممکن است متاورس هنوز هم برای بسیاری از مردم یک اصطلاح انتزاعی باشد، اما می‌توان آن را تکامل «صنعت 4.0» و اینترنت اشیا دانست. در متاورس، استفاده از AR و VR چیزهای فیزیکی را وارد دنیای دیجیتال موازی می کند. داده های جغرافیایی برای ایجاد دوقلوهای دیجیتالی پویا که بلوک های سازنده مهم متاورز را تشکیل می دهند و ارزش افزوده می کنند، ضروری خواهد بود.

کنفرانس مطبوعاتی سنتی در دومین روز از Intergeo بر روی تغییرات آب و هوا متمرکز بود. (ارسالی از: Fokuspokus Media)

باربارا رایان، مدیر اجرایی شورای جهانی صنعت ژئوفضایی (WGIC)، متاورس را «عملکرد اجباری» برای مردم توصیف کرد. او توضیح داد که اصطلاح متاورس برای اولین بار حدود 20 سال پیش در رمان علمی تخیلی Snow Crash نوشته نیل استفنسون ابداع شد. این نشان می‌دهد که همه چیز با چه سرعتی حرکت می‌کند، و شکی نیست که روزی همه ما در دو جهان زندگی خواهیم کرد: دنیای مجازی و فیزیکی.»

توماس هرینگ، رئیس ژئوسیستم در Hexagon، اظهار داشت که دوقلوهای دیجیتال در حال حاضر نوعی متاورس هستند، اما متاورژن حتی پیچیده تر و در زمان واقعی خواهد بود. این امر باعث آگاهی مصرف کنندگان و جامعه گسترده تر از فناوری و آنچه داده های مکانی می توانند انجام دهند، خواهد شد. امیدوارم به جذب جوانان یا استعدادهای جدید به صنعت ما نیز کمک کند.”

نمایشگاه نمایشگاه نمایشگاه نمایشگاه نمایشگاه نمایشگاه نمایشگاه نمایشگاه نمایشگاه نمایشگاه نمایشگاه نمایشگاه نمایشگاه نمایشگاه نمایشگاه نمایشگاه نمایشگاه نمایشگاه نمایشگاه نمایشگاه نمایشگاه نمایشگاه نمایشگاه نمایشگاه

داده های جغرافیایی برای مبارزه با تغییرات آب و هوایی

تغییر اقلیم بدون شک در فهرست اولویت‌های جامعه جهانی قرار دارد. بنابراین، مناسب بود که کنفرانس مطبوعاتی به این موضوع بپردازد که چگونه راه‌حل‌های جغرافیایی می‌توانند به جهان برای مبارزه با این چالش اجتماعی یا سازگاری با اثرات آن کمک کنند. کوترر اظهار داشت که او یک نمایش دیجیتالی از محیط زیست، از جمله چشم انداز، پوشش، ساختمان ها و فرآیندهای فیزیکی را به عنوان مبنایی برای توانمند ساختن تصمیم گیرندگان در بسیاری از رشته ها – از معماران و زیست شناسان گرفته تا مهندسان عمران و شهرداران – برای کاهش تأثیر می داند. تغییرات آب و هوایی

مارتینا کلرله، کارشناس آب و هوا در دانشگاه علوم کاربردی فرانکفورت و رهبر پروژه در caREL (یک پلت فرم تحقیقاتی با استفاده از داده‌های مکانی برای حمایت از اهداف آب و هوایی، از جمله جاه‌طلبی‌های اروپا برای تبدیل شدن به اولین قاره جهان از نظر آب و هوایی خنثی)، صنعت زمین فضایی را ترغیب به مبارزه کرد. تغییر اقلیم با تمام ابزارهای موجود او وظیفه ما را به اشتراک گذاشتن همه داده ها با جهان به صورت رایگان توصیف کرد تا تلاش متحد خود را برای دستیابی به اهداف توافق پاریس تقویت کنیم.

اسکات کروزیر، معاون نظرسنجی و نقشه برداری در Trimble، موافق است که به اشتراک گذاری اطلاعات در واقع کاملاً حیاتی است و گفت که این صنعت می تواند با به اشتراک گذاشتن فراوانی داده های جغرافیایی مرتبط با راه حل های نقشه برداری و نقشه برداری پیشرفته امروزی کمک کند. توماس هرینگ موافق بود که برای تصمیم گیرندگان مهم است که به تمام اطلاعاتی که نیاز دارند دسترسی داشته باشند و افزود که همه داده ها می توانند برای ایجاد یک تأثیر عظیم استفاده شوند.

درصد بازدیدکنندگان زن و همچنین تعداد دانش‌آموزان افزایش یافته بود. (ارسالی از: Fokuspokus Media)

نقش Intergeo در پیشبرد صنعت زمین فضایی

در سومین و آخرین روز Intergeo، من با Kaja Hoppe (رئیس توسعه کسب و کار) از DVW و Christiane Salbach (کارگردان)، همراه با Hinte (سازمان دهنده Intergeo) در سالن مطبوعات برای یک فنجان قهوه ملاقات کردم. با توجه به اینکه تعداد بازدیدکنندگان در اسن فراتر از انتظارات بود و نشانه های مشهود زیادی از مشارکت، آنها به وضوح از موفقیت این رویداد خشنود بودند.

علاوه بر داشتن حس قوی از اتحاد مجدد صنعت، آنها همچنین از بسیاری از تماس های جدید – اغلب به صورت تصادفی – آگاه بودند که ماهیت باز جامعه جغرافیایی را نشان می داد. قابل ذکر است که درصد بازدیدکنندگان زن افزایش یافته بود و همچنین تعداد دانش آموزان نیز افزایش یافته بود. با توجه به کمبود استعداد و تقاضای روزافزون برای فارغ التحصیلان جدید در بازار کار زمین فضایی، حضور تعداد زیادی از جوانان دلگرم کننده است.

به طور خلاصه، منصفانه است که نتیجه بگیریم که Intergeo 2022 در اسن یک بازگشت قوی از رویداد سالانه را رقم زد که یک شهر آلمانی را برای چند روز در هر پاییز به پایتخت جهانی بخش نقشه برداری و نقشه برداری تبدیل می کند. در نتیجه، اکنون همه چیز برای Intergeo سال آینده که در برلین برگزار می شود بسیار امیدوارکننده به نظر می رسد.

تعداد قابل توجهی از شرکت‌ها برای نمایشگاه سال آینده ثبت‌نام کرده‌اند و گوشه «غرفه خود را ایمن کنید» در یکی از سالن‌ها دائماً شلوغ بود. سالباخ ​​که جذابیت منحصربه‌فرد برلین را به عنوان عاملی اضافی برای افزایش پتانسیل Intergeo 2023 برای موفقیت بزرگ‌تر ستایش کرد، تأیید کرد: «رزرو مجدد از سقف گذشته است. علاوه بر این، کمیته سازماندهی قصد دارد نقش محتوا را به منظور گسترش کلمه در مورد پتانسیل بین رشته‌ای فضای جغرافیایی، به عنوان مثال در مورد انرژی، زیرساخت، برنامه‌ریزی شهری و توسعه روستایی، گسترش دهد.

هوپ: “هدف ما ایجاد آگاهی بهتر از آنچه صنعت ما می تواند انجام دهد، هم برای سیاستمداران و هم برای مردم است.” علاوه بر این، شبکه‌سازی نقش مهم‌تری در برلین خواهد داشت و تمرکز بیشتری بر نقشه‌بردار نسل بعدی خواهد بود. همانطور که مارتینا کلرله در کنفرانس مطبوعاتی گفت: “اگر می خواهید قهرمان شوید، مهندس شوید.” الگوهای زیادی در صنعت زمین فضایی وجود دارد و در GIM International، ما از حمایت از تلاش های Intergeo برای ارائه صدای بین المللی به آنها خرسندیم.

تیم Geomares، نماینده GIM International، Geo-Matching و Hydro International.

شبکه های کنترل ژئودتیک: چالش ها و راه حل ها
ابزارهای ضروری برای تغییر شکل و نظارت بر محیط

نوشته :  Mohammad BagherbandiMasoud Shirazian

چالش های کلیدی در ایجاد شبکه های کنترل دقیق ژئودتیک چیست؟ این یکی از مهمترین وظایف زمین شناسان و نقشه برداران زمین است، زیرا شبکه های کنترل ژئودزی برای تغییر شکل و پایش محیطی سدها، تونل ها، برج های بلند، زمین لغزش ها و پل ها و غیره ضروری هستند. این مقاله چالش های اصلی مربوط به زوایای عمودی را مورد بحث قرار می دهد و توصیه هایی برای چگونگی غلبه بر آنها ارائه می دهد.

چالش‌های کلیدی هنگام ایجاد شبکه‌های کنترل دقیق ژئودزی مربوط به زوایای عمودی است که برای کاهش فواصل شیب جمع‌آوری‌شده به فواصل افقی استفاده می‌شوند. این رویکرد که “کاهش فاصله شیب مثلثاتی” نامیده می شود، به خوبی شناخته شده است و معمولاً در ژئودزی انجام می شود. با این حال، کاهش فواصل شیب به فواصل افقی باید بدون خطاهای سیستماتیک موجود انجام شود.

جمع آوری زوایای عمودی (یا زوایای اوج) با استفاده از ایستگاه توتال مسائل مختلفی را ایجاد می کند. خطای انکسار، اثر هندسی (به دلیل انحنا- چولگی مدل مرجع زمین) و اثرات فیزیکی (به دلیل انحراف قائم ها) چالش های اصلی هستند که زوایای عمودی جمع آوری شده را تحت تأثیر قرار می دهند (شکل 1). این اثرات نشان می دهد که زاویه عمودی یک مشاهده حساس است.

شکل 1: الف) انکسار و اثرات فیزیکی و ب) اثر هندسی بر زاویه عمودی و کاهش فاصله شیب.

اثرات روی زاویه عمودی

خطای انکسار به دلیل تغییر چگالی اتمسفر در امتداد خط مبنا رخ می دهد. گرادیان دمای هوا در جهت عمود بر خط دید عامل اصلی در مدل سازی اثر شکست است. همانطور که در شکل 1 نشان داده شده است، مشکلات هندسی و فیزیکی به دلیل عدم موازی بودن محورهای بالا در نقطه شروع و پایان خطوط مبنا در شبکه های کنترل ژئودزی رخ می دهد. مسئله هندسی مربوط به شکل مرجع زمین (مدل کروی یا بیضی) است. به دلیل مشکل انحنا، محورهای بالا موازی نخواهند بود.

با این حال، با انتخاب یک مدل بیضی شکل برای زمین، یک مشکل اضافی ظاهر می شود که به آن مشکل چولگی می گویند (یعنی محورهای بالا در نقاط A و B در بخش های معمولی / دید ریاضی یکسان نیستند). نتایج نشان می‌دهد که خطای هندسی (عدم موازی بودن محورهای بالا) می‌تواند به 32 ثانیه قوس برای طول خط پایه 1 کیلومتر با اختلاف ارتفاع 100 متر برسد، که در آن کاهش فاصله شیب مربوطه 8 میلی‌متر است.

مشکل فیزیکی (یا مشکل انحراف عمودی ها) به دلیل جدا شدن خط عادی از بیضی و شاقول مرجع زمین است. مشکل این است که مشاهدات روی سطح زمین جمع آوری می شوند (شکل فیزیکی زمین)، اما شکل ریاضی زمین (به عنوان مثال بیضی مرجع) برای محاسبات استفاده می شود. بنابراین، مشاهدات باید در حالت عادی به بیضی به عنوان مرجع اصلاح شوند.

ذکر این نکته ضروری است که در استقرار یک شبکه ژئودزی کلاسیک (سیستم مختصات نجومی محلی یا نجومی محلی) چه نوع سیستم مختصاتی تعریف شده است. انحراف مشکل عمودی می تواند به 16.5 میلی متر (برای زاویه اوج 70 درجه) و 4.2 میلی متر (برای زاویه اوج 85 درجه) برسد، با فرض طول خط پایه 1 کیلومتر.

اثرات هندسی و فیزیکی مستقیماً بر زوایای اوج تأثیر می گذارد و در نتیجه کاهش فواصل شیب را تحت تأثیر قرار می دهد. از آنجایی که این مشکلات به وضوح در دستورالعمل ها ذکر نشده است، کمی سازی این مشکلات در باقربندی و همکاران. (2022) می تواند برای تدوین دستورالعمل آینده مفید باشد.

راه حل هایی برای چالش ها

در دستورالعمل های موجود، راه حل پیشنهادی برای مشکلات فوق، قرائت متقابل زوایای عمودی است. با این حال، برای حذف خطای شکست، زاویه عمودی باید به طور همزمان از هر دو انتهای یک فاصله جمع آوری شود (به عنوان مثال، کتابچه راهنمای مهندس 2018، بخش 3-4 را ببینید). قرائت متقابل می تواند راه حلی برای اثرات هندسی و فیزیکی باشد اگر نقاط در یک ارتفاع باشند. در غیر این صورت برای تصحیح زوایای عمودی باید خطاهای هندسی و فیزیکی را در نظر گرفت.

هزینه و زمان هر دو از عوامل مهم در ایجاد شبکه های ژئودتیکی بهینه و دقیق هستند و باید همیشه مورد توجه قرار گیرند. جمع آوری مشاهدات متقابل زمان بر است، به ویژه در مناطق دارای توپوگرافی ناهموار (مانند سایت های سد)، و کار میدانی و هزینه های پروژه را افزایش می دهد.

علاوه بر این، به دلیل شرایط پروژه (به عنوان مثال توپوگرافی ناهموار موجود و نظارت بر برج های مرتفع) همیشه نمی توان از دستورالعمل ها پیروی کرد و شبکه کنترل ژئودزی را با نقاطی در همان ارتفاع طراحی کرد. نتایج نویسندگان نشان می دهد که بی توجهی به اثرات هندسی و فیزیکی می تواند منجر به خطاهای قابل توجهی شود، به خصوص اگر اختلاف ارتفاع زیادی بین نقاط وجود داشته باشد (حتی اگر زوایای عمودی به صورت متقابل جمع آوری شوند).

تاکنون، کتاب‌های درسی و یادداشت‌های سخنرانی ژئودتیک تنها تأثیر هندسی را بر زوایای افقی ارائه می‌کردند. اما چگونه می توان این خطا را برای زاویه عمودی فرموله و کمی سازی کرد؟ مشکل فیزیکی را می توان با استفاده از پایگاه داده گرانش منطقه ای و محاسبه انحراف دقیق اجزای عمودی اصلاح کرد. اطلاعات دقیق در مورد این مشکل و راه حل آن را می توان در باقربندی و همکاران یافت. (2022) و هایسکانن و موریتز (1967، ص 312).

چگونه از خواندن زوایای عمودی خودداری کنیم؟

دو روش می تواند به نقشه برداران زمین کمک کند تا جمع آوری زاویه عمودی را تنها با استفاده از فواصل شیب یک طرفه و زوایای افقی حذف کنند: تنظیم شبکه سه بعدی (ر.ک. گیلانی 2017، فصل 23)، و روشی که اخیراً توسط شیرازیان و همکاران پیشنهاد شده است. (2021) روش به کمک شبکه نامیده می شود.

در روش به کمک شبکه، در مرحله اول فقط می توان از فواصل شیب یک طرفه به صورت تنظیم شبکه آزاد سه بعدی استفاده کرد. فواصل افقی در مرحله بعد با استفاده از مختصات تنظیم شده (مولفه های شرق و شمال) محاسبه می شود. در نهایت، فواصل افقی محاسبه شده، همراه با زوایای افقی یا مشاهدات جهت، در تنظیم نهایی شبکه برای محاسبه شبکه ژئودتیک دو بعدی استفاده می شود.

ژئودزی -
شکل 2: تفاوت مختصات با استفاده از فواصل شیب متقابل و فواصل شیب یک طرفه (روش به کمک شبکه) در الف) سد مجن و ب) شبکه های ژئودزی 2 بعدی سد دامغان.

ژئودزی -ژئودزی -ژئودزی -ژئودزی -ژئودزی -ژئودزی -ژئودزی -ژئودزی -ژئودزی -ژئودزی -ژئودزی -ژئودزی -ژئودزی -ژئودزی -ژئودزی -ژئودزی -ژئودزی –

نویسندگان روش به کمک شبکه را با استفاده از دو شبکه ژئودزی در ایران (سد مژن و سد دامغان) ارزیابی کردند. شکل 2 تفاوت مختصاتی را نشان می دهد که با استفاده از مشاهدات متقابل و یک جهته (یعنی روش به کمک شبکه و فقط با استفاده از فواصل شیب و زوایای افقی) به دست آمده است. نتایج نشان می دهد که اختلاف بین نتایج دو روش کمتر از 1 میلی متر است و بنابراین ناچیز است. علاوه بر این، روش به کمک شبکه منجر به بیضی های خطای مشابه (یا در برخی نقاط، محورهای نیمه اصلی و نیمه کوچکتر) و اعداد افزونگی بهتر می شود.

مزایای روش کمک به شبکه

روش به کمک شبکه در مقایسه با تنظیم شبکه سه بعدی مزایایی دارد. مقایسه این دو روش نشان می دهد که تعداد درجات آزادی در روش به کمک شبکه بیشتر از تنظیم شبکه سه بعدی خواهد بود. این به این معنی است که میانگین افزونگی (یا افزونگی نسبی)، که یک عامل مهم کیفیت شبکه است (به ویژه هنگام طراحی شبکه ها)، در روش پیشنهادی توسط نویسندگان بالاتر است، همانطور که با آزمایش در دو شبکه نظارت بر تغییر شکل سد تایید شده است.

سد مجن در شهرستان شاهرود، استان سمنان، ایران. (تقدیمی از شرکت بین المللی صابر)

داده های GIS برای آژانس مهاجرت سازمان ملل ضروری است؛کمک به زمینه خاص و سیاست گذاری صحیح

نوشته Frédérique Coumans 

سازمان بین المللی مهاجرت یک کاربر اصلی از داده های GIS است. داده های جغرافیایی قابل دسترس، قابل اعتماد و به موقع در کار آن در دنیای به سرعت در حال تغییر امروز که در آن بیش از صد میلیون نفر در سراسر جهان تنها در ماه می آواره شدند، ضروری است. استفاده از قدرت داده‌های مکانی نه تنها برای سیاست‌گذاری مرتبط با مهاجرت ضروری است، بلکه برای حمایت از تصمیم‌گیری آگاهانه و اقدام مؤثر در محل در یک بحران انسانی ضروری است.

سازمان بین المللی مهاجرت (IOM)، که بخشی از سیستم سازمان ملل متحد است، خدمات و توصیه هایی را برای تحقق مهاجرت انسانی و منظم به نفع همه دولت ها و مهاجران ارائه می دهد. سیستم های اطلاعات مکانی (GIS) و مدیریت داده ها برای ماموریت IOM بسیار مهم هستند.

محمد بکر، مسئول سیستم‌های اطلاعات جغرافیایی در دفتر مرکزی IOM در ژنو، سوئیس، می‌گوید: «داده‌های جغرافیایی کاملاً با زمینه‌های مهاجرت و جابه‌جایی داخلی مرتبط هستند که کاملاً مبتنی بر مکان هستند». ابزارهای GIS طیف وسیعی از کاربردها برای IOM دارند، به ویژه برای ماتریس ردیابی جابجایی (DTM) که کل جهان را پوشش می دهد.

ردیابی جمعیت های آواره

DTM برای جمع آوری و تجزیه و تحلیل داده ها به منظور انتشار اطلاعات حیاتی چند لایه در مورد تحرک، آسیب پذیری ها و نیازهای جمعیت های آواره استفاده می شود. این ماتریس داده های مبتنی بر شواهد را به IOM و سایر ذینفعان ارائه می دهد تا بتوانند تصمیمات آگاهانه ای در مورد برنامه ریزی کمک و بازیابی در جوامع آسیب دیده اتخاذ کنند.

ما به طور سیستماتیک اطلاعات مکانی را در مورد الگوهای تحرک انسانی در سراسر جهان مدیریت می کنیم. با بیش از 7000 گردآورنده داده و بیش از 600 متخصص فنی در بیش از 80 کشور، حضور جهانی ماتریس ردیابی جابجایی بسیار زیاد است. خروجی منتشر شده ما – گزارش ها، نقشه ها و مجموعه داده ها – نزدیک به 1.5 میلیون بار دانلود شده است.

این کارایی عملیاتی را بهبود می بخشد، به ویژه در بحران های بشردوستانه که در آن داده های قابل اعتماد و به روز در مورد پویایی جابجایی می تواند عواقب نجات بخش داشته باشد. نیازی به گفتن نیست که تجسم‌های آنلاین GIS نتایج و شاخص‌های کلیدی را بر روی نقشه‌ها و محصولات آماری آسان‌خوان برای مخاطبان گسترده نشان می‌دهد. به عنوان مثال، در پاسخ به همه‌گیری COVID-19، تیم تجزیه و تحلیل جغرافیایی DTM از تجسم جغرافیایی اثرات COVID-19 بر تحرک انسان در سطوح جهانی، منطقه‌ای و کشوری پشتیبانی کرد.

اردوگاه پناهندگان در بنگلادش. داده های ارتفاع از تصاویر پهپاد به IOM اجازه می دهد تا پناهگاه های در معرض خطر سیل و رانش زمین را تجزیه و تحلیل کند. (تصویر با احترام: IOM)

علاوه بر DTM، داده های جغرافیایی نیز برای پروژه مهاجران گمشده IOM که در سال 2014 برای مستندسازی مرگ و میر و ناپدید شدن در طول سفرهای مهاجرتی در سراسر جهان اجرا شد، جمع آوری شده است. هر مکان نشان دهنده یک حادثه مرگ یا ناپدید شدن یک مهاجر است. هر عدد نشان دهنده یک شخص و همچنین خانواده ها و جوامعی است که آنها از خود به جای گذاشته اند.

بکر می‌گوید موقعیت‌های جغرافیایی ثبت‌شده حوادث تخمینی هستند، اما برای ترسیم خطراتی که افرادی که خانه‌های خود را به دنبال زندگی بهتر ترک می‌کنند، در طول سفر با آن‌ها مواجه می‌شوند.» ما اخیراً به نقطه عطف وحشتناک 50000 مرگ ثبت شده در طول مهاجرت رسیده ایم. چالش‌های اطلاعاتی فراوان در زمینه ثبت مرگ و میر در طول جابجایی‌های نامنظم به این معنی است که تعداد بیشتری از آنها بدون سند باقی می‌مانند.»

چالش ها

او و 25 همکارش متخصص GIS در سراسر جهان با اطمینان از استفاده مؤثر از سیستم‌ها و زیرساخت‌های داده، به ویژه در مواقع اضطراری، به عملیات IOM کمک می‌کنند. همچنین مسئولیت هماهنگی انبار داده مرکزی DTM و اطمینان از جریان روان داده ها از ارزیابی های مختلف و جمع آوری داده های مکانی به وب سایت ها، ژئوپورتال ها و سایر برنامه های IOM/DTM است.

چالش‌های خاصی برای مدیریت داده‌ها وجود دارد که باید با آنها مقابله کرد، زیرا اغلب مربوط به مناطقی است که – مطمئناً در آن لحظه – تنها داده‌های ژئودتیکی موجود غیرقابل اعتماد هستند. بکر توضیح می دهد: “تغییرات سریع سرزمینی به دلیل بلایای طبیعی یا در دسترس نبودن مرزهای اداری رسمی، داشتن یک پایگاه محکم برای جمع آوری و تجسم داده ها در پایین ترین سطح اداری را دشوار می کند.” ما عمدتاً با ایجاد مرزهای عملیاتی برای حصول اطمینان از جمع‌آوری داده‌ها با کیفیت مناسب، روی این موضوع کار می‌کنیم. این مرزهای عملیاتی فقط برای استفاده محدود به منظور اطلاع رسانی به جامعه بشردوستانه از دقیق ترین روند جابجایی و مهاجرت است.

نگرانی ویژه دیگر دسترسی به داده های مربوط به وضعیت واقعی است. تصاویر ماهواره‌ای و نقشه‌های GIS برای ارائه اطلاعات لازم برای ارزیابی و پایش به تیم‌های واکنش به بلایا کلیدی هستند. با توجه به دشواری به‌دست‌آوردن به‌موقع جدیدترین تصاویر با وضوح بالا، اولویت‌بندی مداخلات و اطمینان از پاسخ مؤثر برای تیم‌های حاضر در زمین می‌تواند چالش برانگیز باشد. برای مقابله با این موضوع، ما همزمان از ارائه دهندگان مختلف تصاویر ماهواره ای درخواست می کنیم، به این امید که به محض وقوع رویداد، این تصاویر برای تجزیه و تحلیل در دسترس قرار گیرند. در بسیاری از موارد می‌توانیم پیش‌بینی کنیم که آنها اتفاق خواهند افتاد، اما دقیقاً نمی‌دانیم چه زمانی.»

GIS
مسیرهای مهاجرت در چندین منطقه از جمله مسیر مدیترانه ای که در اینجا نشان داده شده است، نظارت می شود. IOM از سال 2014 در مجموع 25000 مهاجر کشته یا مفقود شده در این مسیر را ثبت کرده است. (تصویر از: IOM)

سنجش از دور

باکر و تیمش با همکاری سایر سازمان‌های بشردوستانه می‌خواهند زیرساختی را برای استفاده از سنجش از دور برای پشتیبانی از واکنش سریع، کاهش خطر و برنامه‌ریزی در مکان‌هایی که نقشه‌برداری نشده‌اند یا در مکان‌های غیرقابل دسترس هستند، ایجاد کنند. ما بسیار علاقه مند به اجرای مسئولانه سنجش از دور با استفاده از پهپادها (وسایل نقلیه هوایی بدون سرنشین، ویرایش) و تصاویر ماهواره ای در ترکیب با هوش مصنوعی و یادگیری ماشین هستیم.

این امر امکان انتشار سریع اطلاعاتی را فراهم می‌کند که تصمیم‌گیرندگان و امدادگران را قادر می‌سازد تا کمک‌های بهتری را به جمعیت مهاجر ارائه کنند.” یک مثال یک برنامه نظارتی است که در بنگلادش راه اندازی شده است که نیازها و آسیب پذیری ها را از طریق یک چارچوب مدیریت اطلاعات گسترده ردیابی می کند. مکان هایی که مردم در طی سیل اخیر در آنجا پناه گرفتند، با استفاده از یادگیری ماشین (با همکاری مرکز ماهواره ای سازمان ملل) ردیابی و نقشه برداری می شوند. داده های نقشه که مکان موقت را نشان می دهد بر اساس تجزیه و تحلیل تصاویر پهپاد است.

داده‌های ارتفاعی با وضوح بالا از تصاویر پهپاد به IOM (با همکاری ناسا) اجازه مدل‌سازی سیل‌ها و لغزش‌های آینده را داده است. این همچنین ما را قادر می سازد تا پناهگاه های در معرض خطر در این مناطق را تجزیه و تحلیل کنیم و از واکنش کافی حمایت کنیم.

وقتی از بکر در مورد اولویت‌های سال آینده پرسیده می‌شود، پاسخ می‌دهد: «اولویت‌ها بر اساس آنچه می‌بینیم در حال وقوع است، تعیین می‌شود. اما برای ما به عنوان کارشناسان اطلاعات جغرافیایی، ما توجه ویژه ای به ارائه فیدهای زنده از روند مهاجرت و سایر داده های مرتبط به مرکز داده های جغرافیایی شبکه سازمان ملل خواهیم داشت.

ما روش های تجزیه و تحلیل جغرافیایی خود را با همه آژانس های سازمان ملل به اشتراک خواهیم گذاشت. این امر در دسترس بودن جهانی داده های مکانی مبتنی بر شواهد در مورد مهاجرت و جابجایی را تقویت می کند. اگر این تصمیمات آگاهانه تر را افزایش دهد، تأثیرات مثبت آن برای مهاجران و جامعه به عنوان یک کل می تواند بسیار زیاد باشد.»

درباره سازمان بین المللی مهاجرت

سازمان بین المللی مهاجرت (IOM) که در سال 1951 تأسیس شد، سازمان بین المللی پیشرو در زمینه مهاجرت است. این سازمان بخشی از سیستم سازمان ملل متحد است و دارای 174 کشور عضو، 8 کشور با وضعیت ناظر و دفاتر در بیش از 100 کشور است. این سازمان به ترویج مهاجرت انسانی و منظم به نفع همه اختصاص دارد. بودجه ای معادل 2.5 میلیارد دلار و 17761 کارمند در 523 مکان دارد. IOM در جستجوی راه حل های عملی برای مشکلات مهاجرت کمک می کند و به مهاجران نیازمند، از جمله پناهندگان و آوارگان داخلی کمک های بشردوستانه ارائه می کند.

سال گذشته، علی‌رغم تأثیرات همه‌گیری COVID-19، کمک‌های بشردوستانه IOM به 31.7 میلیون نفر رسید. این سازمان همچنین از پیشبرد قوانین مهاجرت بین‌المللی، بحث‌ها و راهنمایی‌های سیاسی، حمایت از حقوق مهاجران، سلامت مهاجرت و بعد جنسیتی مهاجرت حمایت می‌کند.

این مقاله بر روی GIS و ردیابی جابجایی IOM تمرکز دارد. در سال 2021، داده های مربوط به تحرک جمعیت در 78 کشور جمع آوری، تجزیه و تحلیل و منتشر شد. با تجزیه و تحلیل جغرافیایی داده های جابجایی و جریان، ماتریس ردیابی جابجایی (DTM) منجر به انتشار بیش از 2400 گزارش، محصولات نقشه برداری و مجموعه داده ها شده است و محصولات آن 1.5 میلیون بار دانلود شده است.

DTM علاوه بر اینکه به طور سیستماتیک در عملیات واکنش بشردوستانه، فرآیندهای بازیابی و بازگشت مستقر می شود، به عنوان یک ابزار آمادگی نیز بسیار موثر است، به عنوان مثال. برای نقشه برداری از مکان های تخلیه و جابجایی احتمالی.

GIS GIS GIS GIS GIS GIS GIS GIS GIS GIS GIS GIS GIS GIS GIS GIS GIS GIS GIS GIS GIS GIS GIS GIS GIS GIS

نقشه‌ها را می‌توان برای شناسایی پناهگاه‌های موقت جدید، با ردیابی تکامل بر اساس تجزیه و تحلیل تصاویر پهپاد (در این مورد 7604 پناهگاه) استفاده کرد. کاربران می توانند برای سهولت مقایسه بین نقشه ها از تاریخ های مختلف جابجا شوند. (تصویر از: IOM)

مطالعه بیشتر:

https://www.iom.int

https://displacement.iom.int

مدلسازی و شبیه سازی شهرها با دوقلو دیجیتال Digital Twins؛ از داده های خام تا محصول نهایی

نوشته:  Anders LoggVasilis Naserentin 

مفهوم Digital Twins یا دوقلو دیجیتال در سال‌های اخیر عملاً گسترده شده است، اما در محیط ساخته شده، اصطلاح سنتی مدت‌ها «مدل شهر سه‌بعدی» بوده است. با این حال، دوقلو دیجیتال به طور فزاینده ای به عنوان یک مفهوم مفید که فراتر از مدل های سه بعدی شهر گسترش می یابد، نه تنها برای مدل سازی، بلکه برای شبیه سازی شهرها نیز پذیرفته می شود. بنابراین دوقلو دیجیتال چیست، چگونه از آنها استفاده می‌شود و چه چالش‌هایی در بر دارند؟

مفهوم دوقلوی دیجیتال در سال های اخیر عملاً منفجر شده است، همانطور که با افزایش روزافزون تعداد مقالات علمی که از این مفهوم استفاده می کنند، مشهود است. این مفهوم از صنعت تولید سرچشمه می گیرد که در آن استفاده از مدل های CAD امکان ایجاد کپی دیجیتال دقیق از اجزا و محصولات را فراهم می کند. اولین استفاده از این اصطلاح به سال 2003 برمی گردد و اغلب به گریوز و ویکرز نسبت داده می شود، اما می توان ارجاعات قبلی به این مفهوم را یافت. مطمئناً، درک این موضوع که مدل‌های ریاضی و اخیراً دیجیتالی سیستم‌های فیزیکی از اهمیت زیادی هم برای علم و هم برای مهندسی برخوردار هستند به قرن‌ها قبل برمی‌گردد.

تعریف دوقلو دیجیتال Digital Twins

پس یک دوقلو دیجیتال چیست؟ هم در ادبیات علمی و هم بیشتر از آن، در روایت‌های تجاری، «دوقلو دیجیتال» یک مفهوم کاملاً کشسان است که برای برچسب‌گذاری فناوری‌ها یا سیستم‌هایی که ممکن است مطابق با همه معیارهای یک دوقلو دیجیتال باشند یا نباشند، استفاده می‌شود. آیا یک دوقلو دیجیتال نیاز به یک مدل سه بعدی دارد؟ آیا یک دوقلو دیجیتال باید داده‌های حسگر زمان واقعی را شامل شود؟ آیا یک دوقلو دیجیتال نیاز به مدل سازی و شبیه سازی ریاضی دارد؟

نگاهی به برخی از تعاریف متعددی که برای مفهوم دوقلو دیجیتال ارائه شده است، آموزنده و جالب است، زیرا به نظر می‌رسد برخی از همگرایی نسبت به یک تعریف پذیرفته شده جهانی وجود دارد. به عنوان مثال، اکثر تعاریف اکنون موافق هستند که یک دوقلو دیجیتال مدلی از یک سیستم فیزیکی است که سیستم فیزیکی را در زمان واقعی منعکس می کند و امکان تجزیه و تحلیل و پیش بینی سیستم فیزیکی را فراهم می کند. بنابراین می توان از دوقلو دیجیتال هم برای تجزیه و تحلیل سیستم فیزیکی (“آنچه هست”) و هم برای پیش بینی رفتار آینده آن تحت فرضیات داده شده (“چه چیزی ممکن است”) استفاده کرد.

این تعریف تا حدی با تعریف رشید و همکاران همپوشانی دارد. (2020): “یک دوقلو دیجیتال به عنوان یک نمایش مجازی از یک دارایی فیزیکی تعریف می شود که از طریق داده ها و شبیه سازها برای پیش بینی، بهینه سازی، نظارت، کنترل و تصمیم گیری در زمان واقعی فعال می شود.

” تعریف مشابهی توسط IBM استفاده شده است: “یک دوقلو دیجیتال نمایش مجازی یک شی یا سیستم است که چرخه حیات خود را در بر می گیرد، از داده های زمان واقعی به روز می شود و از شبیه سازی، یادگیری ماشین و استدلال برای کمک به تصمیم گیری استفاده می کند.” این دو تعریف اخیر بر دو فناوری تأکید دارند که ممکن است برای فعال کردن عملکرد پیش‌بینی دوقلو دیجیتال استفاده شوند: شبیه‌سازی و یادگیری ماشین.

مدلسازی و شبیه سازی شهرها با دوقلو دیجیتال Digital Twins؛ از داده های خام تا محصول نهایی
شکل 1: جزئیات مرز یک مش حجمی چهار وجهی سه بعدی که از داده های ابر کاداستر و نقطه تولید می شود.

تعریفی که اغلب در ادبیات قبلی در مورد دوقلو دیجیتال دیده می شود این است که توسط گلسگن و استارگل (2012): ” دوقلو دیجیتال یک شبیه سازی چندفیزیکی یکپارچه، چند مقیاسی و احتمالاتی از یک سیستم […] ساخته شده است که از بهترین فیزیکی موجود استفاده می کند.

مدل‌ها، به‌روزرسانی‌های حسگر، […]، برای منعکس کردن زندگی Twins[فیزیکی] متناظر آن.” تعریف ساده‌تری در ویکی‌پدیا ارائه شده است: «یک دوقلو دیجیتال یک نمایش مجازی است که به عنوان همتای دیجیتالی بلادرنگ یک شی یا فرآیند فیزیکی عمل می‌کند».

در حوزه شهرهای دیجیتال، استوتر و همکاران. (2021) بر استفاده از مدل‌های شهر سه بعدی به عنوان بخش اساسی یک دوقلو دیجیتال تأکید می‌کند: «[دوقلو دیجیتالها] باید بر اساس مدل‌های سه‌بعدی شهر، حاوی اشیایی با اطلاعات هندسی و معنایی باشد. باید حاوی داده های حسگر زمان واقعی باشد. و باید انواع تحلیل ها و شبیه سازی ها را ادغام کند تا بتواند بهترین تصمیمات طراحی، برنامه ریزی و مداخله را اتخاذ کند.

این تعریف یادآور سنت طولانی در محیط ساخته شده برای ایجاد مدل های سه بعدی از شهرها و ساختمان ها است، که ممکن است با داده های معنایی غنی شده و به عنوان مبنایی برای تجزیه و تحلیل، از جمله، به عنوان مثال، تحلیل نور روز و انرژی، و همچنین شبیه سازی استفاده شود.

مواردی مانند ترافیک، راحتی باد یا کیفیت هوا. در محیط ساخته شده، اصطلاح سنتی «مدل شهر سه بعدی» است، و به تازگی مفهوم دوقلو دیجیتال به عنوان یک مفهوم مفید و چیزی فراتر از مدل‌های سه بعدی شهر مورد پذیرش قرار گرفته است.

داده های خام

نقطه شروع برای ایجاد دوقلو دیجیتال یک شهر، دسترسی به داده های خام است. این داده ها ممکن است از اسکن های هوایی به شکل ابرهای نقطه ای ایجاد شوند. سپس ابرهای نقطه ای برای ایجاد مدل های شهر دو بعدی یا سه بعدی پردازش می شوند. دسترسی به داده ها بین کشورها متفاوت است و ممکن است همیشه باز یا آزادانه در دسترس نباشد.

در سوئد، Lantmäteriet، مرجع نقشه‌برداری، کاداستر و ثبت زمین سوئد، مجموعه‌ای از مجموعه‌های داده شامل ابرهای نقطه‌ای و نقشه‌های دوبعدی را برای کل سوئد (با پرداخت هزینه) ارائه می‌کند. در همین حال، مجموعه داده های دقیق تر و با کیفیت بالاتر، از جمله مدل های سه بعدی، در اختیار شهرداری های محلی است.

در هلند وضعیت متفاوت است. آدرس‌ها و ساختمان‌های 3D Baseregister (BAG) دسترسی رایگان و آزاد به مدل‌های سه بعدی را برای تمام ده میلیون ساختمان در کشور فراهم می‌کند. علاوه بر این، مجموعه داده به طور منظم و خودکار بازسازی می شود تا یک مدل سه بعدی به روز از کل کشور ارائه کند.

شکل 2: نتایج اولیه از شبیه سازی آسایش باد شهری توسط DTCC (در Unreal Engine ارائه شده است).

مدل های داده

برای ساختن یک دوقلو دیجیتالی با پیچیدگی و کاربرد، ضروری است در نظر بگیریم که کدام مدل داده برای تعریف دوقلو دیجیتال استفاده می شود. توجه داشته باشید که این با مدل(های) ریاضی مورد استفاده برای شبیه سازی و پیش بینی متفاوت است.

انتخاب مدل داده دیکته می‌کند که کدام داده می‌تواند نمایش داده شود، و کدام مواردی که ممکن است توسط دوقلو دیجیتال پشتیبانی شود. مدل داده اجرای یک هستی شناسی خاص است که به طور صریح یا ضمنی توسط پیاده سازی تعریف شده است. هستی شناسی نحوه توصیف و درک داده های دوقلو دیجیتال را از نظر کلاس ها، ویژگی ها و روابط تعریف می کند. چندین مدل داده و قالب‌های تبادل متناظر برای مدل‌سازی شهر پیشنهاد شده‌اند.

یکی از برجسته ترین آنها CityGML است که استانداردی از کنسرسیوم فضایی باز (OGC) است. فرمت CityJSON مرتبط (همچنین یک استاندارد OGC) یک رمزگذاری ساده شده و بسیار برنامه نویس پسندتر از مدل CityGML است.

مشترک بسیاری از مدل‌های داده برای مدل‌سازی شهر، مفهوم سطح جزئیات (LOD) است. این مفهوم، مدل داده را قادر می‌سازد تا نمایش‌های مختلف شهر را با سطوح مختلف جزئیات (رزولوشن هندسی) برای اهداف مختلف ذخیره کند.

وجود همزمان چندین سطح از جزئیات در یک دوقلو دیجیتال تأکید می کند که دوقلو دیجیتال در واقع مدلی از سیستم فیزیکی است که منعکس می کند، و نمایش دیجیتال و همچنین دقت آن توسط هر دو مورد استفاده که دوقلو دیجیتال برای آنها طراحی شده است دیکته می شود. ، کیفیت داده ها و منابع محاسباتی موجود.

شکل 3: تجسم یک دوقلو دیجیتال از پردیس دانشگاه صنعتی چالمرز در گوتنبرگ (در Unreal Engine ارائه شده است).

تولید داده

موارد استفاده مختلف از یک دوقلو دیجیتال اغلب به نمایش داده های بسیار متفاوتی نیاز دارند. برای مدل‌سازی یک شهر، اگر از یک معمار یا یک دانشمند محاسباتی سؤال شود، ممکن است درک آنچه که یک مدل سه بعدی با کیفیت بالا را تشکیل می‌دهد، بسیار متفاوت باشد. برای معمار، یک مدل سه بعدی با کیفیت بالا ممکن است به معنای مجموعه ای دقیق از شبکه های سطحی باشد که توپوگرافی شهر و هندسه ساختمان های آن را توصیف می کند.

مش های سطح ممکن است هم ناسازگار و هم ناسازگار باشند، زیرا مش ها بیشتر برای تجسم و محاسبات ساده مانند آنالیز نور روز استفاده می شوند. از سوی دیگر، برای یک دانشمند محاسباتی، یک مدل سه بعدی با کیفیت بالا ممکن است به معنای یک شبکه حجمی با وضوح پایین، برازش مرزی و منطبق باشد که ممکن است برای اجرای چیزهایی مانند شبیه‌سازی دینامیک جریان محاسباتی (CFD) استفاده شود.

تیم مرکز شهرهای دوقلو دیجیتال (DTCC) در سوئد در حال حاضر در حال توسعه یک پلتفرم منبع باز برای نمایش و تولید مدل های داده با کیفیت بالا برای دوقلوهای دیجیتال شهرها هستند. یکی از مراحل کلیدی، تولید شبکه‌های سطحی با کیفیت بالا و شبکه‌های حجمی چهاروجهی از داده‌های کاداستر و ابر نقطه‌ای با کارایی بالا است (شکل 1). این امکان تولید ساده و کارآمد مدل های سه بعدی را برای هر بخشی از سوئد (یا هر نقطه دیگری از جهان که داده های سازگار دارد) را فراهم می کند.

تولید مش در حال حاضر به مدل های LOD1 محدود شده است، به این معنی که ساختمان ها به صورت منشورهای چند ضلعی (بام های تخت) نشان داده می شوند. با این حال، کار برای گسترش نسل مش به مدل‌های LOD2، از جمله شکل‌های غیر مسطح پشت بام بر اساس تقسیم‌بندی سقف‌ها از عکس‌های ارتو با استفاده از تکنیک‌های یادگیری ماشین، در حال انجام است.

شکل 4: تجسم یک شبکه جاده به عنوان بخشی از دوقلوی دیجیتالی یک منطقه در مرکز گوتنبرگ (در Unreal Engine ارائه شده است).

مدل سازی و شبیه سازی

با وجود مش های محاسباتی که به راحتی برای هر شهری در دسترس هستند، طبیعی است که استفاده از مدل سازی و شبیه سازی مبتنی بر فیزیک را برای فعال کردن تجزیه و تحلیل و پیش بینی پیشرفته در نظر بگیریم. نمونه‌هایی از پدیده‌های فیزیکی که ممکن است در مطالعه شهرها مرتبط باشند عبارتند از آسایش باد شهری (شرایط باد در سطح خیابان)، کیفیت هوا، نویز، و میدان‌های الکترومغناطیسی (برای تحلیل پوشش شبکه).

یکی از نمونه‌های این شبیه‌سازی که در حال حاضر در DTCC بررسی می‌شود، شبیه‌سازی آسایش باد شهری است. این شبیه‌سازی از یک روش مرز غوطه‌ور برای معادلات رینولدز میانگین ناویر-استوکس (RANS) با استفاده از IPS IBOFlow استفاده می‌کند. تمرکز فعلی بر تأیید و اعتبارسنجی نتایج شبیه‌سازی برای مجموعه‌ای از موارد معیار شبیه‌سازی باد شهر است که قبلاً در تونل‌های باد مورد مطالعه قرار گرفته‌اند.

برخی از نتایج اولیه در شکل 2 نشان داده شده است. نمونه‌های دیگر از مدل‌سازی و شبیه‌سازی مبتنی بر فیزیک که در حال حاضر در DTCC مورد بررسی قرار می‌گیرند، شامل شبیه‌سازی کیفیت هوا، صدای خیابان، حرکت جمعیت و شبیه‌سازی ژئوتکنیکی بر اساس مدل‌های الاستوپلاستیک از خاک رس نرم است که مقدار زیادی را تشکیل می‌دهد. از زیرزمینی گوتنبرگ

تجسم

تجسم داده‌ها در مقیاس شهری، خود زمینه‌ای برای تحقیقات مداوم است. اطلاعات فیزیکی، مانند جریان باد و کیفیت هوا (به عنوان مثال، غلظت آلاینده ها)، باید به گونه ای ارائه شود که برای کاربر نهایی قابل درک باشد، اما بدون ساده سازی بیش از حد نتایج علمی. ارتباط موثر نتایج مستلزم چندین تکرار طراحی است که در آن محققین، توسعه دهندگان و کاربران نهایی/ذینفعان درگیر هستند.

DTCC به طور فعال با سهامداران اصلی مانند آژانس حمل و نقل سوئد در پروژه های تحقیقاتی همکاری می کند که چگونگی ارتباط بهترین نتایج شبیه سازی را با گروه های مختلف کاربر بررسی می کند. پروژه‌های تحقیقاتی در حال انجام در حوزه تجسم بر راه‌حل‌های مختلف برای اشتقاق داده، آماده‌سازی، بسته‌بندی، همگن‌سازی و انتشار تمرکز می‌کنند.

موتورهای گرافیکی مختلف آزمایش شده و مورد استفاده قرار می گیرند، به عنوان مثال، Unreal Engine و OpenGL، و همچنین پیاده سازی های مختلف برنامه های کاربردی وب مبتنی بر Mapbox، CesiumJS و Babylon.js.

شکل 5: تجسم داده های حجمی به عنوان بخشی از دوقلوی دیجیتالی یک منطقه در مرکز گوتنبرگ (در Unreal Engine ارائه شده است).

چالش های فنی

چالش‌های زیادی در ایجاد یک دوقلوی دیجیتالی از چیزی بسیار پیچیده مانند یک شهر وجود دارد. از آنجایی که شهر خود یک سیستم پیچیده است که نه تنها خیابان‌ها و ساختمان‌های شهر، بلکه ساکنان آن، اتومبیل‌های در حال حرکت در خیابان‌ها، تعامل با محیط اطراف (باد و آب) و همچنین زیرساخت‌های زیرزمینی را در بر می‌گیرد. – که گاهی اوقات نادیده گرفته می شود و در عین حال بسیار قابل توجه است – طبیعی است که ایجاد یک دوقلوی دیجیتالی شهر به همان اندازه پیچیده باشد.

بنابراین، وظیفه ساختن دوقلو دیجیتال به طور ضروری پروژه ای است که باید متخصصان بسیاری از رشته های مختلف را درگیر کند. چالش‌های فنی درگیر در ساختن دوقلو دیجیتال، هم شامل چالش‌های بین‌رشته‌ای در همکاری بین اعضای تیم از رشته‌های بسیار متفاوت و هم چالش‌های فنی درون رشته‌ای یا دامنه خاص از قبل ایجاد شده، مانند نحوه پیاده‌سازی یک حل‌کننده المان محدود با کارآمدترین روش برای یکی می‌شود.

از بسیاری از مدل‌های ریاضی که با هم مدل چندفیزیکی را تشکیل می‌دهند که دوقلوی دیجیتالی است.

چالش های غیر فنی

با کنار گذاشتن چالش‌های فنی، چالش‌های اصلی که تاکنون در DTCC تجربه شده‌اند، همگی به داده‌ها مربوط می‌شوند:

  • مالکیت داده در سراسر سازمان ها: داده ها اغلب نه رایگان هستند و نه باز. سازمان‌ها، حتی شهرداری‌ها، تمایلی به اشتراک‌گذاری آزادانه داده‌های خود ندارند، زیرا در مقطعی سرمایه‌گذاری قابل‌توجهی در جمع‌آوری و مدیریت آن انجام داده‌اند. این در نقاط مختلف جهان متفاوت است. در برخی موارد (مانند هلند)، داده ها در واقع رایگان و باز هستند.
  • دوقلو چون واقعیت دائما در حال تغییر است. تنها راه برای اتصال مجدد دوقلو دیجیتال به دوقلو فیزیکی، سرمایه گذاری در یک پروژه جدید و پرهزینه است. بنابراین، فرآیند ایجاد دوقلو دیجیتال باید به طور خودکار انجام شود تا بتوان آن را به طور مداوم بازسازی و بازسازی کرد.
  • کیفیت داده در بین رشته‌ها: همانطور که در مثال فوق الذکر از یک مش برای استفاده توسط یک معمار در مقابل یک دانشمند محاسباتی، یک مجموعه داده خاص ممکن است برای یک مورد خاص با کیفیت بالا در نظر گرفته شود، اما ممکن است برای موارد استفاده دیگر از کیفیت بسیار پایینی برخوردار باشد.
  • پایداری داده در طول زمان: ایجاد یک دوقلو دیجیتال باید به عنوان یک فرآیند درک شود تا به عنوان یک پروژه. نمونه‌های زیادی از شهرها، شهرداری‌ها و سایر سازمان‌ها وجود دارد که روی پروژه‌هایی برای ایجاد یک مدل سه بعدی یا حتی یک دوقلو دیجیتال سرمایه‌گذاری می‌کنند، اما چند سال بعد (یا حتی فقط چند ماه) متوجه می‌شوند که دوقلوی دیجیتال دیگر منعکس‌کننده شرایط فیزیکی نیست.
شکل 6: تجسم یک دوقلو دیجیتال از حومه گوتنبرگ (با استفاده از WebGL ارائه شده است).

سپاسگزاریها

این اثر بخشی از مرکز شهرهای دوقلو دیجیتال است که توسط آژانس نوآوری سوئد Vinnova تحت کمک مالی شماره 2019-00041 پشتیبانی می‌شود. نویسندگان می‌خواهند از اپیک گیمز برای تأمین مالی بخش‌هایی از این اثر با یک مگا گرانت Epic تشکر کنند. علاوه بر این، آنها از Sanjay Somanath، Daniel Sjölie، Andreas Rudenå و Orfeas Eleftheriou برای ارائه تصاویر موجود در اینجا سپاسگزاری می کنند. این مقاله بر اساس «شهرهای دوقلو دیجیتالی: مدل‌سازی چند رشته‌ای و شبیه‌سازی با عملکرد بالا شهرها» است که برای اولین بار در نسخه ژوئن 2022 خبرنامه ECCOMAS منتشر شد.

سفری به واقعیت جدید؛ برداشت‌ها از HxGN Live Global 2022

صنعت زمین فضایی به کدام سمت می رود؟ شرکت ها روی کدام فعالیت های اصلی تمرکز خواهند کرد؟ پیشرفت های سریع تکنولوژیکی چگونه آینده را شکل خواهند داد؟ نسخه اخیر HxGN Live Global در لاس وگاس یک مرکز مهم برای حرفه ای ها تشکیل داد که می خواستند تصویر واضحی از آنچه در زمینه نقشه برداری و نقشه برداری در پیش است به دست آورند – و همچنین، همانطور که در طول رویداد آشکار شد، به طور فزاینده ای خارج از آن.

هگزاگون بدون شک یک نیروگاه راه حل های واقعیت دیجیتال است، بنابراین جای تعجب نداشت که شرکت کنندگان در کنفرانس پرچمدار این شرکت، HxGN Live Global 2022، در اوایل سال جاری در جدیدترین حسگرها، نرم افزارها و فناوری های مستقل غوطه ور شدند. همه چیز به طرز خیره کننده ای به نمایش گذاشته شده بود، با سالن مملو از حضور مدیران پرشور هگزاگون در یک صحنه بزرگ که توسط نماهای صوتی و تصویری خیره کننده پشتیبانی می شد. چشم انداز آینده این شرکت میلیارد دلاری با به روز رسانی ها، راه اندازی محصول و سایر اعلامیه ها آمیخته شد. اما فلسفه پشت تحولات تکنولوژیکی چیست و چگونه بر کار نقشه بردار تأثیر می گذارد؟

متاورس

HxGN Live Global 2022 در The Venetian Resort در لاس وگاس، ایالات متحده آمریکا، از 20 تا 22 ژوئن برگزار شد. کلمه کلیدی امسال قطعا «متاورس» بود. یکی از مشکلات کلمات رایج این است که آنها اغلب معنای واقعی را پنهان می کنند تا اینکه به طور موثر آن را منتقل کنند. با این حال، در لاس وگاس، خوشبختانه بحث ها عمیق تر شد. به گفته کنسرسیوم فضایی باز، متاورس «اینترنت است که توسط فناوری‌های سه بعدی بلادرنگ دگرگون شده است، اما تأثیر سه‌بعدی بلادرنگ در حال تغییر فضای جغرافیایی نیز هست.

در فراجهان، دنیای واقعی و اینترنت با هم ادغام خواهند شد – و اطلاعات مکانی و فناوری کلید این ترکیب خواهند بود. در یک سخنرانی کلیدی در مورد این موضوع، به نام “جایی که متاورس با تجارت روبرو می شود”، بورخارد بوکم، مدیر ارشد فناوری شش ضلعی، نیز بر این نکته تاکید کرد که فضای مکانی و فراجهان در هم تنیده شده اند. او متاورس را “سفر به واقعیت جدید” توصیف کرد که صنعت را متحول می کند.

او توضیح داد که این سفر همراه با فناوری جدید ایجاد شده توسط هگزاگون است، در حالی که او روی تمام اجزای مورد نیاز برای ایجاد یک واقعیت دیجیتال هوشمند زوم کرد – از فتوگرامتری پیشرفته و راه حل های سنجش از دور غنی شده با هوش مصنوعی (AI) و روباتیک. به GIS و مدل سازی اطلاعات ساختمان (BIM).

 نیروگاه راه حل های واقعیت دیجیتالی است، زمین فضا
بورخارد بوکم متاورژن را به عنوان “سفر به واقعیت جدید” توصیف کرد که صنعت زمین فضایی را متحول می کند.

پایداری

برای این سخنرانی کلیدی، اریک یوزفسون به بوئکم روی صحنه پیوست. او مدیرعامل R-Evolution، زیرمجموعه نوآوری پایدار و سرمایه‌گذاری فناوری سبز Hexagon است که هدف آن اختراع مجدد و توانمندسازی صنعت برای مقابله با خطرات پیچیده زیست محیطی است. به گفته جوزفسون، پایداری “بزرگترین فرصت تجاری قرن بیست و یکم” است. او این بیانیه را با نمونه هایی از دیجیتالی کردن تولید انرژی خورشیدی و جذب مقادیر زیادی CO2 در جنگل های علف دریایی پشتیبانی کرد. اوایل آن روز صبح، اولا رولن یک جلسه توجیهی صبحانه برای نمایندگان رسانه‌هایی که این رویداد را پوشش می‌دادند برگزار کرده بود.

رولن که از 31 دسامبر به عنوان رئیس و مدیر عامل Hexagon توسط پائولو گوگلیلمینی جانشین وی خواهد شد، چهار تغییر عمده را بیان کرد که به اعتقاد او صنعت زمین فضایی و کار نقشه برداران را در دهه آینده تغییر خواهد داد: از خرید به اشتراک، از اتوماسیون به خودمختاری. از سوخت‌های فسیلی گرفته تا انرژی‌های تجدیدپذیر، و از دوقلوی دیجیتال تا واقعیت دیجیتال هوشمند. با “واقعیت دیجیتالی هوشمند”، Hexagon به این معنی است که یک مدل مجازی این پتانسیل را دارد که بسیار بیشتر از یک کپی دیجیتالی از فضای بیرون باشد. تعامل منابع داده ایستا و زنده با هم می تواند آنچه را که در واقعیت اتفاق می افتد نشان دهد.

دموکراتیک سازی ژئوفضایی

به طور سنتی، صنعت زمین فضایی تحت سلطه نقشه برداران زمین و متخصصان GIS بود. بر اساس داده‌های به‌دست‌آمده با استفاده از دستگاه‌های با فناوری پیشرفته که بر روی پلت‌فرم‌های زمینی، هوابرد یا سیار نصب شده‌اند، آنها دانش و مهارت‌های تخصصی خود را برای مکان‌یابی و نقشه‌برداری عناصر دنیای واقعی به کار گرفتند. بینش های حاصل عمدتاً برای حمایت از پروژه های معماری، مهندسی و ساخت و ساز (AEC) یا برای حل چالش های مدیریت زمین استفاده شد.

با این حال، پیشرفت‌های فناوری اخیر جمع‌آوری حجم بیشتری از داده‌های مکانی بسیار دقیق‌تر و دقیق‌تر را آسان‌تر کرده است. علاوه بر این، اکنون می‌توان چندین منبع داده را برای ایجاد مدل‌های سه‌بعدی محیط‌ها، از جمله ساختمان‌ها و سایر ویژگی‌های فیزیکی – و حتی دوقلوهای دیجیتال کل شهرها – با هزینه بسیار کمتر از قبل ترکیب کرد.

در دسترس بودن گسترده‌تر این داده‌ها، فرصت‌های بی‌شماری را برای کاربرد راه‌حل‌های مکانی در طیف وسیعی از بخش‌هایی که قبلاً کشف نشده بودند، باز کرده است. این دموکراتیزه‌سازی فضای جغرافیایی پیامدهای عمیقی برای جهت‌گیری آینده شرکت‌هایی مانند Hexagon دارد و این موضوع در طول رویداد HxGN Live به طور فزاینده‌ای آشکار شد.

دوقلویی دیجیتال

در حالی که متاورس یک موضوع رایج در کنفرانس بود، بسیاری از موضوعات مورد بحث در طول جلسات متعدد به دوقلوهای دیجیتال و فناوری زمین فضایی زیربنایی مربوط می شد. این امر منطقی است، زیرا دوقلوهای دیجیتال را می توان به عنوان یک بلوک سازنده مهم متاوره از نظر دسترسی به دنیای فیزیکی در یک محیط مجازی در نظر گرفت. اما این در عمل به چه معناست؟

«دوقلویی دیجیتال» چگونه به زندگی روزمره و به طور کلی جامعه سود می‌رساند؟ در HxGN Live، تجربه دیرینه هگزاگون از ترکیب ورودی‌های حسگرهای ثبت واقعیت با نرم‌افزار و ابزارهای تجسم پیشرفته برای فعال کردن اطلاعات از راه دور و مبتنی بر مکان به وضوح درخشید. این شرکت نشان داد که چگونه می‌توان از واقعیت‌های دیجیتال هوشمند برای بهبود موقعیت‌ها و فعالیت‌های محل، بهبود عملکرد و کارایی استفاده کرد.

به عنوان مثال، در حین کار با یک دارایی، مکانیک ها و مهندسان می توانند به دستورالعمل های گام به گام در مورد نحوه تعمیر آن دسترسی مستقیم داشته باشند. این می تواند به ساده سازی وظایف تعمیر و نگهداری و کاهش ضایعات مواد و کار مجدد کمک کند.

Ola Rollén HxGN Live 2022 را با سخنرانی کلیدی در مورد “What Stands in Way تبدیل به راه می شود” آغاز کرد.

زمین فضا زمین فضا زمین فضا زمین فضا زمین فضا زمین فضا زمین فضا زمین فضا زمین فضا زمین فضا زمین فضا زمین فضا زمین فضا زمین فضا زمین فضا زمین فضا زمین فضا زمین فضا زمین فضا

مردم محور

شکی نیست که فناوری دیجیتال به طور غیرقابل برگشتی چهره نقشه برداری و نقشه برداری را تغییر می دهد. اما علیرغم تغییر از اتوماسیون به خودمختاری، هنوز به متخصصان ماهر به شدت مورد نیاز است. به عنوان مثال، اکنون که دوقلوهای دیجیتال در حال حرکت به خط مقدم هستند، به طور فزاینده ای از آنها خواسته می شود تا اطلاعات معناداری را از مدل به دنیای فیزیکی برگردانند.

بنابراین، در بحبوحه این جشن از برخی پیشرفت‌های فن‌آوری شگفت‌انگیز – که بسیاری از آنها واکنش واقعاً مشتاق تماشاگران را که از سراسر جهان به لاس‌وگاس سفر کرده بودند، برانگیخت – دیدن یک پیام مردم‌محور شاداب بود. در یکی از جلسات پربیننده ارائه شد.

توماس هرینگ، رئیس بخش Geosystems Hexagon، در یک سخنرانی مشترک با کریگ مارتین، رئیس بخش ایالات متحده / کانادا و ANZ این شرکت گفت: “در دنیای فناوری، مردم تفاوت را ایجاد می کنند.” مارتین گفت: “هیچکس نمی داند نقشه برداران چه کار می کنند، تا زمانی که دیگر این کار را انجام ندهند.”

سخنرانی پرمخاطب آنها بر نیاز به نسل جدیدی از نقشه برداران و کارشناسان زمین فضایی و چگونگی جذب آنها به صنعت متمرکز بود. آنها حرفه نقشه برداری را به برنامه نویسی رایانه تشبیه کردند که قبلاً تصویری خفه کننده داشت. فقط برای آدم های نادان بود اکنون، سال‌ها بعد، برنامه‌نویسی به یک شغل شیک و مد روز تبدیل شده است.

بنابراین چگونه می‌توانیم اطمینان حاصل کنیم که متخصصان نقشه‌برداری/داده‌های جغرافیایی نیز باحال تلقی می‌شوند؟ هرینگ جلسه را با فراخوانی برای اقدام برای صنعت به پایان رساند: گسترش آگاهی و ایجاد شور و نشاط.

آیا جذب بچه ها به نقشه برداری هدفی دست نیافتنی به نظر می رسد؟ آیا تلاش برای وسوسه کردن جوانان بیشتر به مطالعه ژئوماتیک بیهوده است؟ به نقل از اولا رولن در طول سخنرانی خود: “روز قبل از اینکه چیزی واقعاً یک پیشرفت باشد، ایده دیوانه کننده ای است.”

اسکنر لیزری نسل بعدی: جدید لایکا BLK360

هگزاگون از فرصت HxGN Live 2022 استفاده کرد و Leica BLK360 کاملاً جدید را معرفی کرد که برای ساده‌سازی قابل‌توجهی تصویربرداری از واقعیت و تسهیل ایجاد سریع محصولات معنادار طراحی شده است. این اسکنر لیزری تصویربرداری دقیق پیشرفته از Leica Geosystems مجهز به فناوری اسکن سریع و سیستم اینرسی بصری (VIS) است که به طور خودکار اسکن‌ها را در محل ترکیب می‌کند.

در نتیجه، گرفتن یک اسکن کامل Lidar با تصاویر کروی فقط 20 ثانیه طول می کشد، که باعث می شود بیش از پنج برابر سریعتر از BLK360 اصلی باشد. BLK360 جدید را می توان با استفاده از برنامه موبایل Leica Cyclone FIELD 360 کنترل کرد. همگام‌سازی کامل داده‌ها بین دستگاه‌های دارای Wi-Fi از گردش‌های کاری خودکار پشتیبانی می‌کند که منجر به تولید سریع‌تر مجموعه داده‌های کامل می‌شود.

Wim van Wegen از GIM International در حین عرضه در HxGN Live 2022 راه‌حل اسکنر لیزری کاملاً جدید Leica BLK360 را به دست آورد.

دانلود کتاب نقشه برداری – مقدمه ای انتقادی بر کارتوگرافی و GIS (Mapping – A Critical Introduction to Cartography and GIS )

نقشه برداری

نویسنده: جرمی دبلیو کرامپتون

ناشر : Wiley-Blackwell; چاپ اول (1 فوریه 2010)
زبان: انگلیسی
شومیز : 240 صفحه
ISBN-10 : ‏ 1405121734
ISBN-13 : 978-1405121736
ابعاد: 6.8 x 0.6 x 9.8 اینچ
رتبه پرفروش: #1,350,862 جلد کتاب
شماره 154 در کارتوگرافی
شماره 402 در جغرافیای منطقه ای
شماره 680 در علوم زمین (کتاب)

درباره کتاب نقشه برداری:

Mapping: A Critical Introduction to Cartography and GIS مقدمه ای است بر مسائل حیاتی پیرامون نقشه برداری و سیستم های اطلاعات جغرافیایی (GIS) در طیف وسیعی از رشته ها برای خوانندگان غیر متخصص.
تأثیرات کلیدی سیستم های اطلاعات جغرافیایی (GIS) و نقشه برداری بر مطالعه جغرافیا و سایر رشته های مرتبط را بررسی می کند.

نمایانگر اولین خلاصه عمیق از “کارتوگرافی جدید” است که از اوایل دهه 1990 ظاهر شده است.
توضیحی در مورد چیستی این نقشه‌نگاری انتقادی جدید، چرایی اهمیت آن و چگونگی ارتباط آن با مجموعه گسترده و بین‌رشته‌ای از خوانندگان ارائه می‌دهد.
بحث تئوری تکمیل شده با مطالعات موردی در دنیای واقعی را ارائه می دهد
درک فنی از GIS و نقشه برداری و همچنین حساسیت به اهمیت تئوری را گرد هم می آورد

بررسی های سرمقاله

استفاده از نقشه ها به عنوان وسیله ای برای انتقال اطلاعات جغرافیایی از زمان های قدیم تغییر چندانی نکرده است. اما روش های جمع آوری داده ها برای تهیه نقشه، البته، به شدت تغییر کرده است. Mapping: A Critical Introduction to Cartography and GIS به بررسی نقش حیاتی سیستم های اطلاعات جغرافیایی (GIS) و کارتوگرافی در مطالعه جغرافیا و طیف وسیعی از رشته ها می پردازد. با کاوش در موضوعاتی مانند نژاد و هویت، سیاست GIS، نقشه‌برداری از فضای مجازی، نظارت و هنر نقشه، دقیقاً متوجه می‌شویم که «استفاده» از نقشه‌ها و GIS به طور انتقادی در دنیای امروز چیست.

این کتاب همچنین توسعه تاریخی نقشه برداری را بررسی می کند، ظهور نقشه برداری موضوعی در اروپای مدرن را مرور می کند و چگونگی تولید فضا و مکان را نقشه ها بررسی می کند. چندین مطالعه موردی در دنیای واقعی مفاهیم کلیدی را نشان می‌دهند و زمینه عملی را برای رویکردها و ایده‌های نظری ارائه شده در اختیار خوانندگان قرار می‌دهند. نقشه برداری: مقدمه ای انتقادی بر نقشه برداری و GIS، نقشه برداری را از نظر جغرافیایی در قلب تفکر قرار می دهد و پایه مفهومی محکمی را در اصول اولیه نقشه برداری و پیشرفت های تکنولوژیکی که چهره نقشه برداری را تغییر داده است، در اختیار خوانندگان قرار می دهد.

استفاده از نقشه ها به عنوان وسیله ای برای انتقال اطلاعات جغرافیایی از زمان های قدیم تغییر چندانی نکرده است. اما روش های جمع آوری داده ها برای تهیه نقشه، البته، به شدت تغییر کرده است. Mapping: A Critical Introduction to Cartography and GIS به بررسی نقش حیاتی سیستم های اطلاعات جغرافیایی (GIS) و کارتوگرافی در مطالعه جغرافیا و طیف وسیعی از رشته ها می پردازد. با کاوش در موضوعاتی مانند نژاد و هویت، سیاست GIS، نقشه برداری از فضای مجازی، نظارت و هنر نقشه، دقیقاً متوجه می‌شویم که «استفاده» از نقشه‌ها و GIS به طور انتقادی در دنیای امروز چیست.

این کتاب همچنین توسعه تاریخی نقشه بردار ی را بررسی می کند، ظهور نقشه برداری موضوعی در اروپای مدرن را مرور می کند و چگونگی تولید فضا و مکان را نقشه ها بررسی می کند. چندین مطالعه موردی در دنیای واقعی مفاهیم کلیدی را نشان می‌دهند و زمینه عملی را برای رویکردها و ایده‌های نظری ارائه شده در اختیار خوانندگان قرار می‌دهند. نقشه برداری: مقدمه ای انتقادی بر نقشه برداری و GIS، نقشه برداری را از نظر جغرافیایی در قلب تفکر قرار می دهد و پایه مفهومی محکمی را در اصول اولیه نقشه برداری و پیشرفت های تکنولوژیکی که چهره نقشه برداری را تغییر داده است، در اختیار خوانندگان قرار می دهد.

درباره نویسنده

جرمی دبلیو کرامپتون دانشیار جغرافیا در دانشگاه کنتاکی است که در آنجا GIS، نقشه برداری و جغرافیای سیاسی تدریس می کند. او نویسنده نقشه های سیاسی فضای مجازی (2003) و فضا، دانش و قدرت: فوکو و جغرافیا (ویرایش استوارت الدن، 2007) و سردبیر سابق مجله Cartographica: The International Journal for Geographic Information and Geovisualization است. .

درباره جلد: اندازه مهم است

روی جلد نقشه ای از جمعیت جهان را نشان می دهد که توسط مارک نیومن ایجاد شده است.
با این حال، نیومن به جای اینکه جهان را آنطور که معمولاً می بینیم، چه از فضا و چه بر روی یک برجستگی نشان دهد، نقشه ای ایجاد کرده است که در آن اندازه هر کشور با جمعیت آن نسبت مستقیم دارد.

این نقشه که برای نقشه‌نگاران به‌عنوان کارتوگرام شناخته می‌شود، تفسیری رادیکال از دنیای آشنا ارائه می‌کند، گویی که توده‌های خشکی توسط یک لامپ گدازه‌ای ناکارآمد ایجاد شده‌اند

. چین و هند – که به تنهایی حدود یک سوم جمعیت جهان را دارند – البته بسیار بزرگ هستند، اما اندونزی و نیجریه نیز چنین هستند. سازمان ملل متحد پیش بینی می کند که تا سال 2050 نیجریه پنجمین کشور بزرگ جهان خواهد بود، از 15مین کشور در سال 1950. کشورهایی مانند کانادا، استرالیا و روسیه که تمایل دارند بر اکثر نقشه هایی که معمولاً می بینیم تسلط داشته باشند، در اینجا نشان داده شده اند.

عبارتند از: نسبتاً کم جمعیت. جالب توجه است که آمریکای جنوبی نسبتاً آسیب ندیده و نزدیکترین نقشه به “عادی” است. خط آبی که خط استوا را نشان می‌دهد، حقیقت نسبتاً شگفت‌انگیز دیگری را نیز نشان می‌دهد: «شمال جهانی» نیمه پرجمعیت‌تر سیاره است. نیمکره ها با هم برابر نیستند این نقشه همچنین در ارائه دلایل ژئوپلیتیک منطقه ای خوب است: به عنوان مثال به اندازه اوکراین، ترکیه یا اتیوپی نگاه کنید.

کارتوگرام ها را می توان از انواع داده ها تهیه کرد، و نیومن و همکارش دنی دورلینگ نقشه هایی از افراد مبتلا به HIV/AIDS، هزینه های مراقبت های بهداشتی، تولید ناخالص داخلی، انتشار CO2 و نقشه های انتخابات ایالات متحده بر اساس تعداد رای دهندگان تهیه کرده اند.

در نهایت، مقایسه کارتوگرام با نقشه سوررئالیستی بازیگوش در فصل 2 غیر قابل مقاومت است. این نقشه بر چه اساسی ترسیم شده است؟

برای دانلود کتاب اینجا کلیک کنید.

   نقش داده های مکانی و GIS در مدیریت بحران

GIS

ﺣﻮﺯﻩ ﺍﻃﻼﻋﺎﺕ ﻣﻜﺎﻧﻲ (GIS) ﻳﻜﻲ ﺍﺯ ﻣﻬﻢﺗﺮﻳﻦ ﻭ ﻛﻠﻴﺪﻱﺗﺮﻳﻦ ﻣﻨـﺎﺑﻊ ﻣـﻮﺭﺩ ﻧﻴـﺎﺯ ﺑـﺮﺍﻱ ﻣـﺪﻳﺮﻳﺖ، ﺑﺮﻧﺎﻣـﻪﺭﻳـﺰﻱ ﻭ ﺗﺼﻤﻴﻢﮔﻴﺮﻱ ﺑﻪ ﺷﻤﺎﺭ ﻣﻲﺭﻭﺩ. ﺍﻫﻤﻴﺖ ﺍﻳﻦ ﺍﻃﻼﻋﺎﺕ ﺗﺎ ﺣﺪﻱ ﺍﻓﺰﺍﻳﺶ ﻳﺎﻓﺘﻪ ﺍﺳﺖ ﻛﻪ ﺍﺯ ﺁﻥ ﺑﻪ ﻋﻨﻮﺍﻥ ﺭﻛـﻦ ﭼﻬـﺎﺭﻡ ﺩﺭ ﺗﺼﻤﻴﻢﮔﻴﺮﻱ ﺩﺭ ﻛﻨﺎﺭ ﺳﻪ ﺭﻛﻦ ﺩﻳﮕﺮ ﻳﻌﻨﻲ ﺯﻣﺎﻥ، ﻫﺰﻳﻨﻪ ﻭ ﻛﻴﻔﻴﺖ ﻳﺎﺩ ﻣﻲﺷﻮﺩ.

ﻳﻜﻲ ﺍﺯ ﺑﺰﺭﮔﺘﺮﻳﻦ ﻧﻘﺎﻁ ﺿﻌﻒ ﻣﺪﻳﺮﻳﺖ ﺑﺤﺮﺍﻥ، ﻋﺪﻡ ﺩﺳﺘﺮﺳﻲ ﻭ ﺍﺳﺘﻔﺎﺩﻩ ﻣﺪﻳﺮﺍﻥ ﺍﺯ ﺍﻃﻼﻋﺎﺕ ﺻﺤﻴﺢ ﻭ ﺑﻬﻨﮕﺎﻡ ﺩﺭ ﺍﺭﺗﺒﺎﻁ ﺑﺎ ﻭﺿﻌﻴﺖ ﺟﺎﺭﻱ ﺑﺤﺮﺍﻥ ﺍﺯ ﺣﻴﺚ ﻭﺳﻌﺖ ﺑﺤﺮﺍﻥ، ﺍﻓـﺮﺍﺩ ﻭ ﺗﺎﺳﻴﺴـﺎﺕ ﺗﺤـﺖ ﺗـﺎﺛﻴﺮ، ﻣﻴـﺰﺍﻥ ﻣﻨـﺎﺑﻊ ﻭ ﺍﻣﻜﺎﻧـﺎﺕ ﻣﻮﺟﻮﺩ، ﻣﻨﺎﺑﻊ ﻭ ﺍﻣﻜﺎﻧﺎﺕ ﻣﻮﺭﺩ ﻧﻴﺎﺯ، ﺭﺍﻩﻫﺎ ﻭ ﺭﻭﺵﻫﺎﻱ ﻣﻤﻜﻦ ﺍﻣﺪﺍﺩﺭﺳﺎﻧﻲ، ﻓﻌﺎﻟﻴﺖ ﺳﺎﺯﻣﺎﻥﻫﺎ ﻭ ﮔﺮﻭﻩﻫـﺎﻱ ﻛـﺎﺭﻱ ﻣﺨﺘﻠﻒ ﺍﻣﺪﺍﺩﺭﺳﺎﻥ ﺩﺭ ﻣﻨﻄﻘﻪ ﻭ… ﺍﺳﺖ.

ﺩﺭ ﺍﻳﻦ ﺭﺍﺳﺘﺎ ﺩﺭ ﺍﺩﺍﻣﻪ ﮔﺰﺍﺭﺵ ﺑﻪ ﻣﻌﺮﻓـﻲ ﺗﻜﻨﻴـﻚ ﻫـﺎﻱ ﺗﻮﻟﻴـﺪ ﻭ ﺟﻤـﻊ ﺁﻭﺭﻱ ﺩﺍﺩﻩ ﻫـﺎﻱ ﻣﻜـﺎﻧﻲ ﻭ ﻧﻘـﺶ ﺳﻴﺴـﺘﻢ ﺍﻃﻼﻋﺎﺕ ﻣﻜﺎﻧﻲ ﺩﺭ ﺣﻮﺯﻩ ﻣﺪﻳﺮﻳﺖ ﺑﺤﺮﺍﻥ ﭘﺮﺩﺍﺧﺘﻪ ﺷﺪﻩ ﺍﺳﺖ.

ﺗﻌﺮﻳﻒ ﻣﺴﺌﻠﻪ

ﻳﻜﻲ ﺍﺯ ﺑﺰﺭﮔﺘﺮﻳﻦ ﻧﻘﺎﻁ ﺿﻌﻒ ﻣﺪﻳﺮﻳﺖ ﺑﺤﺮﺍﻥ، ﻋﺪﻡ ﺩﺳﺘﺮﺳﻲ ﻭ ﺍﺳﺘﻔﺎﺩﻩ ﻣﺪﻳﺮﺍﻥ ﺍﺯ ﺍﻃﻼﻋﺎﺕ ﺻﺤﻴﺢ ﻭ ﺑﻬﻨﮕﺎﻡ ﺩﺭ  ﺍﺭﺗﺒﺎﻁ ﺑﺎ ﻭﺿﻌﻴﺖ ﺟﺎﺭﻱ ﺑﺤﺮﺍﻥ ﺍﺯ ﺣﻴﺚ ﻭﺳﻌﺖ ﺑﺤﺮﺍﻥ، ﺍﻓـﺮﺍﺩ ﻭ ﺗﺎﺳﻴﺴـﺎﺕ ﺗﺤـﺖ ﺗـﺎﺛﻴﺮ، ﻣﻴـﺰﺍﻥ ﻣﻨـﺎﺑﻊ ﻭ ﺍﻣﻜﺎﻧـﺎﺕ  ﻣﻮﺟﻮﺩ، ﻣﻨﺎﺑﻊ ﻭ ﺍﻣﻜﺎﻧﺎﺕ ﻣﻮﺭﺩ ﻧﻴﺎﺯ، ﺭﺍﻩﻫﺎ ﻭ ﺭﻭﺵﻫﺎﻱ ﻣﻤﻜﻦ ﺍﻣﺪﺍﺩﺭﺳﺎﻧﻲ، ﻓﻌﺎﻟﻴﺖ ﺳﺎﺯﻣﺎﻥﻫﺎ ﻭ ﮔﺮﻭﻩﻫـﺎﻱ ﻛـﺎﺭﻱ ﻣﺨﺘﻠﻒ ﺍﻣﺪﺍﺩﺭﺳﺎﻥ ﺩﺭ ﻣﻨﻄﻘﻪ ﻭ… ﺍﺳﺖ.

ﺩﺭ ﺍﻳﻦ ﺣﻮﺯﻩ ﺍﻃﻼﻋﺎﺕ ﻣﻜﺎﻧﻲ (GIS) ﻳﻜﻲ ﺍﺯ ﻣﻬﻢﺗﺮﻳﻦ ﻭ ﻛﻠﻴﺪﻱﺗﺮﻳﻦ ﻣﻨـﺎﺑﻊ ﻣـﻮﺭﺩ ﻧﻴـﺎﺯ ﺑـﺮﺍﻱ ﻣـﺪﻳﺮﻳﺖ، ﺑﺮﻧﺎﻣـﻪﺭﻳـﺰﻱ ﻭ  ﺗﺼﻤﻴﻢﮔﻴﺮﻱ ﺑﻪ ﺷﻤﺎﺭ ﻣﻲﺭﻭﺩ. ﺍﻫﻤﻴﺖ ﺍﻳﻦ ﺍﻃﻼﻋﺎﺕ ﺗﺎ ﺣﺪﻱ ﺍﻓﺰﺍﻳﺶ ﻳﺎﻓﺘﻪ ﺍﺳﺖ ﻛﻪ ﺍﺯ ﺁﻥ ﺑﻪ ﻋﻨﻮﺍﻥ ﺭﻛـﻦ ﭼﻬـﺎﺭﻡ ﺩﺭ ﺗﺼﻤﻴﻢﮔﻴﺮﻱ ﺩﺭ ﻛﻨﺎﺭ ﺳﻪ ﺭﻛﻦ ﺩﻳﮕﺮ ﻳﻌﻨﻲ ﺯﻣﺎﻥ، ﻫﺰﻳﻨﻪ ﻭ ﻛﻴﻔﻴﺖ ﻳﺎﺩ ﻣﻲﺷﻮﺩ.

ﺩﺭ ﺍﻳﻦ ﺭﺍﺳﺘﺎ ﺩﺭ ﺍﺩﺍﻣﻪ ﮔﺰﺍﺭﺵ ﺑﻪ ﻣﻌﺮﻓـﻲ ﺗﻜﻨﻴـﻚ ﻫـﺎﻱ ﺗﻮﻟﻴـﺪ ﻭ ﺟﻤـﻊ ﺁﻭﺭﻱ ﺩﺍﺩﻩ ﻫـﺎﻱ ﻣﻜـﺎﻧﻲ ﻭ ﻧﻘـﺶ ﺳﻴﺴـﺘﻢ اﻃﻼﻋﺎﺕ ﻣﻜﺎﻧﻲ ﺩﺭ ﺣﻮﺯﻩ ﻣﺪﻳﺮﻳﺖ ﺑﺤﺮﺍﻥ ﭘﺮﺩﺍﺧﺘﻪ ﺷﺪﻩ ﺍﺳﺖ.

ﺩﺍﺩﻩ ﻣﻜﺎﻧﻲ

ﺑﻨﺎ ﺑﻪ ﺗﻌﺮﻳﻒ، ﻫﺮ ﺩﺍﺩﻩ ﻗﺎﺑﻞ ﻧﻤﺎﻳﺶ ﺩﺭ ﻳﻚ ﻧﻘﺸﻪ ﺩﺍﺭﺍﻱ ﺳﻴﺴﺘﻢ ﻣﺨﺘﺼﺎﺕ ﻳﺎ ﺍﻃﻼﻋﺎﺕ ﻣﺮﺑـﻮﻁ ﺑـﻪ ﻣﻮﻗﻌﻴـﺖ، ﺷـﻜﻞ ﻋﻮﺍﺭﺽ ﺟﻐﺮﺍﻓﻴﺎﻳﻲ ﻭ ﺍﺭﺗﺒﺎﻁ ﺑﻴﻦ ﺁﻧﻬﺎ ﻛﻪ ﺑﻪ ﻃﻮﺭ ﺭﺍﻳﺞ ﺑﻪ ﺻﻮﺭﺕ ﻣﺨﺘﺼﺎﺕ ﻭ ﺗﻮﭘﻮﻟـﻮﮊﻱ ﺫﺧﻴـﺮﻩ ﻣﻴﺸـﻮﺩ، ﺭﺍ ﺩﺍﺩﻩ ﻣﻜﺎﻧﻲ ﻣﻲﮔﻮﻳﻨﺪ. ﺑﻄﻮﺭ ﻣﺜﺎﻝ ﻣﻮﻗﻌﻴﺖ ﻭﻗﻮﻉ ﻳﻚ ﺯﻣﻴﻦ ﻟﺮﺯﻩ ﻳﺎ ﺁﺗﺶﺳﻮﺯﻱ ﻣﻲﺗﻮﺍﻧﺪ ﺑﻪ ﻳﻚ ﻋـﺪﺩ ﺩﺭ ﻳـﻚ ﺳﻴﺴـﺘﻢ ﻣﺨﺘﺼﺎﺕ ﻣﻨﺘﺴﺐ ﺷﻮﺩ. ﺍﻳﻦ ﻋﺪﺩ ﺑﻪ ﻋﻨﻮﺍﻥ ﻣﺨﺘﺼﺎﺕ ﺁﻥ ﻣﺤﻞ (ﺩﺭ ﻳﻚ ﺳﻴﺴﺘﻢ ﻣﺨﺘﺼﺎﺕ ﻣﺤﻠـﻲ ﻳـﺎ ﺟﻬـﺎﻧﻲ) ﻳـﻚ ﺩﺍﺩﻩ ﻣﻜﺎﻧﻲ ﻣﺤﺴﻮﺏ ﻣﻴﺸﻮﺩ.

ﺗﻜﻨﻴﻚ ﻫﺎﻱ ﺗﻮﻟﻴﺪ ﺩﺍﺩﻩ ﻫﺎﻱ ﻣﻜﺎﻧﻲ

ﮊﺋﻮﻣﺎﺗﻴﻚ ﻋﻠﻢ ﺟﻤﻊﺁﻭﺭﻱ، ﺗﺤﻠﻴﻞ ﻭ ﺗﻔﺴﻴﺮ ﺩﺍﺩﻩﻫﺎ، ﺑﻮﻳﮋﻩ ﺩﺍﺩﻩﻫﺎﻱ ﻣﺮﺑﻮﻁ ﺑﻪ ﺳﻄﺢ ﺯﻣﻴﻦ ﻭ ﻫﻤﭽﻨـﻴﻦ ﻣـﺪﻝﺳـﺎﺯﻱ،  ﺗﺤﻠﻴﻞ ﻭ ﻣﺪﻳﺮﻳﺖ ﺩﺍﺩﻩ ﻫﺎﻱ ﻣﻜﺎﻧﻲ (ﺯﻣﻴﻦ ﻣﺮﺟﻊ) ﺍﺳﺖ .

ﺑﻄـﻮﺭ ﻛﻠـﻲ ﻧﻘﺸـﻪﺑـﺮﺩﺍﺭﻱ ﻋﻠـﻢ ﻭ ﺗﻜﻨﻮﻟـﻮﮊﻱ ﻣﺮﺑـﻮﻁ ﺑـﻪ ﻭﻳﮋﮔـﻲ ﻭ ﺳـﺎﺧﺘﺎﺭ ﺩﺍﺩﻩﻫـﺎﻱ ﻣﻜـﺎﻧﻲ ، ﺭﻭﺷـﻬﺎﻱ ﺍﺧـﺬ ،  ﺳﺎﺯﻣﺎﻧﺪﻫﻲ، ﻃﺒﻘﻪﺑﻨﺪﻱ، ﺑﺮﺭﺳﻲ ﻛﻴﻔﻴﺖ، ﺗﺤﻠﻴﻞ، ﻣﺪﻳﺮﻳﺖ، ﻧﻤﺎﻳﺶ ﻭ ﻫﻤﭽﻨﻴﻦ ﻧﻴﺎﺯ ﺳﺎﺧﺘﺎﺭﻱ ﺑـﺮﺍﻱ ﺍﺳـﺘﻔﺎﺩﻩ ﺍﺯ ﺍﻳـﻦ  ﺍﻃﻼﻋﺎﺕ ﻣﻲﺑﺎﺷﺪ. ﺩﺍﺩﻩ ﻫﺎﻱ ﻣﻜﺎﻧﻲ ﺍﺯ ﻃﻴﻒ ﻭﺳﻴﻌﻲ ﺍﺯ ﻋﻠﻮﻡ ﻗﺎﺑﻞ ﺗﻮﻟﻴﺪ ﺍﺳﺖ ﻛﻪ ﻫﺮﻛﺪﺍﻡ ﺑﺮﺍﻱ ﺍﺭﺍﺋﻪ ﺗﺼـﻮﻳﺮﻱ ﺍﺯ   ﺟﻬﺎﻥ ﻓﻴﺰﻳﻜﻲ ﻣﻲﺗﻮﺍﻧﺪ ﻣﻮﺭﺩ ﺍﺳﺘﻔﺎﺩﻩ ﻗﺮﺍﺭ ﮔﻴﺮﺩ. ﺍﻳﻦ ﻋﻠﻮﻡ ﻋﺒﺎﺭﺗﻨﺪ ﺍﺯ :

ﺳﻨﺠﺶ ﺍﺯ ﺩﻭﺭ ( Remote Sensing ) : ﺍﺳﺎﺱ ﺳﻨﺠﺶ ﺍﺯ ﺩﻭﺭ، ﻣﺎﻫﻮﺍﺭﻩ ﻫـﺎﻱ ﺗﺼـﻮﻳﺮﺑﺮﺩﺍﺭﻱ ﻣﺴـﺘﻘﺮ ﺩﺭ ﺑـﺎﻻﻱ ﺳـﻄﺢ  ﺯﻣﻴﻦ ﻣﻲ ﺑﺎﺷﻨﺪ. ﺁﻳﻜﻮﻧﻮﺱ ، ۲ ﺍﺳﭙﺎﺕ ۳ ﻭ ﻟﻨﺪﺳﺖ ۴ ﺍﺯ ﻣﺎﻫﻮﺍﺭﻩﻫﺎﻱ ﺷﻨﺎﺧﺘﻪ ﺷﺪﻩ ﺳﻨﺠﺶ ﺍﺯ ﺩﻭﺭ ﻣﻲ ﺑﺎﺷﻨﺪ.ﺳـﻨﺠﺶ ﺍﺯ  ﺩﻭﺭ ﻛﺎﺭﺑﺮﺩﻫﺎﻱ ﮔﺴﺘﺮﺩﻩﺍﻱ ﺩﺭ ﺑﺮﺁﻭﺭﺩ ﺧﺴﺎﺭﺍﺕ ﻭ ﻣﺪﻳﺮﻳﺖ ﺑﺤﺮﺍﻥ ﺩﺍﺭﺩ ﻛﻪ ﺍﺯ ﺁﻥ ﺟﻤﻠﻪ ﻣﻲﺗﻮﺍﻥ ﺑﻪ ﺗﺼﻮﻳﺮﺑﺮﺩﺍﺭﻱ  ﻣﺎﻫﻮﺍﺭﻩ ﺍﻱ ﺍﭘﺘﻴﻜﻲ ﺍﺷﺎﺭﻩ ﻛﺮﺩ.

ﺩﺍﺩﻩﻫﺎﻱ ﻣﻜﺎﻧﻲ ﺍﺧﺬ ﺷﺪﻩ ﺍﺯ ﻣﺎﻫﻮﺍﺭﻩﻫﺎﻱ ﺳﻨﺠﺶ، ﻣﻲﺗﻮﺍﻧﻨﺪ ﺩﺭ ﺭﺩﮔﻴﺮﻱ ﻃﻮﻓﺎﻧﻬﺎﻱ ﺳﻬﻤﮕﻴﻦ، ﺁﺗﺶ ﺳﻮﺯﻳﻬﺎ، ﺳﻴﻞ  ﻭ ﻇﻐﻴﺎﻥ ﺭﻭﺩﺧﺎﻧﻪﻫﺎ، ﺁﺗﺸﻔﺸﺎﻧﻬﺎ، ﮔﺮﺩ ﻭ ﻏﺒﺎﺭ ﻭ ﺩﻭﺩ، ﺯﻟﺰﻟﻪ ﻭ ﺗﺨﻤﻴﻦ ﻭﻗـﻮﻉ ﻣﺠـﺪﺩ ﺁﻥ، ﻓﺮﺳـﺎﻳﺶ ﺳـﺎﺣﻠﻲ ﻭ ﭘـﻴﺶ  ﺑﻴﻨﻲ ﻣﻬﺎﺟﺮﺕ ﺁﻓﺎﺕ ﻛﻤﻚ ﺷﺎﻳﺎﻧﻲ ﻧﻤﺎﻳﻨﺪ.  

 ﻓﺘـﻮﮔﺮﺍﻣﺘﺮﻱ : ﻋﻜﺴـﺒﺮﺩﺍﺭﻱ ﺍﺯ ﻃﺮﻳـﻖ ﻫﻮﺍﭘﻴﻤـﺎ ﻭ ﺗﻬﻴـﻪ ﻧﻘﺸـﻪ ﺍﺯ ﻋﻜـﺲﻫـﺎﻱ ﺗﻬﻴـﻪ ﺷـﺪﻩ ﺍﺯ ﺍﺻـﻮﻝ ﻓﺘـﻮﮔﺮﺍﻣﺘﺮﻱ ﻣﻴﺒﺎﺷﺪ.ﺗﺼﺎﻭﻳﺮ ﻫـﻮﺍﻳﻲ ﺩﺭ ﺣـﻮﺯﻩ ﺭﺍﻫﺒـﺮﻱ ﺗـﻴﻢﻫـﺎﻱ ﻭﺍﻛـﻨﺶ ﺍﺿـﻄﺮﺍﺭﻱ، ﺗﺸـﺨﻴﺺ ﻣﻜـﺎﻥﻫـﺎ ﺑـﺎ ﻧﺎﭘﺎﻳـﺪﺍﺭﻱﻫـﺎﻱ ﮊﺋﻮﺗﻜﻨﻴﻜﻲ، ﺁﺷﻜﺎﺭﺳﺎﺯﻱ ﻧﺸﺖ ﻣﻮﺍﺩ ﺧﻄﺮﻧﺎﻙ، ﺑﺮﺁﻭﺭﺩ ﻣﻴـﺰﺍﻥ ﺗﻐﻴﻴـﺮﺍﺕ ﻭ ﺗﺨﺮﻳـﺐ ﭘـﺲ ﺍﺯ ﺯﻟﺰﻟـﻪ، ﺑﺮﻧﺎﻣـﻪﺭﻳـﺰﻱ ﺑﺎﺯﺳﺎﺯﻱ، ﭘﺎﺳﺦ ﺑﻪ ﺑﺤﺮﺍﻥ ﻭ ﻣﺴﺘﻨﺪﺳﺎﺯﻱ ﺳﻮﺍﻧﺢ ﻣﻴﺘﻮﺍﻧﺪ ﻛﺎﺭﺑﺮﺩ ﺯﻳﺎﺩﻱ ﺩﺍﺷﺘﻪ ﺑﺎﺷﺪ.

ﺳﻴﺴﺘﻢﻫﺎﻱ ﻫﻮﺍﻳﻲ ﻟﻴﺰﺭﻱ ﻳﻜﻲ ﺩﻳﮕﺮ ﺍﺯ ﺍﺑﺰﺍﺭﻫﺎﻳﺴﺖ ﻛﻪ ﺩﺭ ﻣﺪﻝﺳﺎﺯﻱ ﺳﻪﺑﻌﺪﻱ ﺷﻬﺮﻫﺎ، ﻭﺿﻌﻴﺖ ﺳـﺎﺧﺘﺎﺭﻱ ﻳـﻚ ﺷﻬﺮ (ﺑﺎﻓﺖ ﻭ ﺗﻮﭘﻮﮔﺮﺍﻓﻲ) ﻛﺎﺭﺑﺮﺩ ﺩﺍﺭﺩ ﻭ ﭼﻨﺎﻧﭽﻪ ﺍﻃﻼﻋﺎﺕ ﺳﺎﺧﺘﻤﺎﻥﻫﺎ ﻭ ﺗﻐﻴﻴﺮﺍﺕ ﺷﻬﺮﻱ ﻣﺮﺗﺒﺎً ﺑﻪ ﺑﺎﻧﻚ ﺍﻃﻼﻋـﺎﺗﻲ ﻭﺍﺭﺩ ﻭ ﺗﺼﺤﻴﺢ ﺷﻮﺩ، ﮔﺰﺍﺭﺷﻲ ﺍﺯ ﻭﺿﻌﻴﺖ ﻓﻌﻠﻲ ﻭ ﺗﻐﻴﻴﺮﺍﺕ ﺣـﺎﺩﺙ ﺷـﺪﻩ ﺭﺍ ﻣـﻲﺗﻮﺍﻧـﺪ ﺍﺭﺍﺋـﻪ ﻛﻨـﺪ. ﺍﻣـﺮﻭﺯﻩ ﺑﻴﺸـﺘﺮ ﺷﻬﺮﻫﺎﻱ ﭘﻴﺸﺮﻓﺘﻪ ﺩﺭ ﺣﺎﻝ ﺗﺪﻭﻳﻦ ﻭ ﺗﻜﻤﻴﻞ ﻧﻘﺸﻪﻫﺎﻱ ﺧﻄﺮ ﻭ ﺧﻄﺮﭘﺬﻳﺮﻱ ﺳﻪ ﺑﻌﺪﻱﺍﻧﺪ ﻛـﻪ ﺍﺭﺗﺒـﺎﻁ ﺑﺼـﺮﻱ ﻗـﻮﻱ ﻭ ﺗﺎﺛﻴﺮﮔﺬﺍﺭﻱ ﺭﺍ ﺩﺭﻣﻴﺎﻥ ﻣﺮﺩﻡ ﻭ ﻣﺴﺌﻮﻻﻥ ﺩﺍﺭﻧﺪ.

ﺩﺭ ﺣﻮﺯﻩ ﺭﻭﺳﺘﺎﻳﻲ ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺍﻳﻨﻜﻪ ﺗﻌﺪﺍﺩ ﺑﻴﺸﻤﺎﺭﻱ ﺍﺯ ﺭﻭﺳﺘﺎﻫﺎ ﻭ ﺷﻬﺮﺳـﺘﺎﻧﻬﺎﻱ ﺍﻳـﺮﺍﻥ ﺯﻳـﺮ ۱۰۰۰ ﻫﻜﺘـﺎﺭ ﻣﺴـﺎﺣﺖ ﺩﺍﺭﻧﺪ ﻭ ﺑﺴﻴﺎﺭﻱ ﺍﺯ ﺁﻧﻬﺎ ﺣﺘﻲ ﺯﻳﺮ ۲۰۰ ﻫﻜﺘﺎﺭ ﻣﺴﺎﺣﺖ ﺩﺍﺭﻧﺪ، ﺑﺎ ﺍﺳـﺘﻔﺎﺩﻩ ﺍﺯ ﻳـﻚ ﻋﻤـﻮﺩ ﭘـﺮﻭﺍﺯ ﺑـﺪﻭﻥ ﺳﺮﻧﺸـﻴﻦ ﺩﺭ ﻣﺪﺕ ﺯﻣﺎﻥ ﻛﻮﺗﺎﻫﻲ ﻣﻲ ﺗﻮﺍﻥ ﺑﺎ ﻫﺰﻳﻨﻪ ﺑﺴﻴﺎﺭ ﭘﺎﻳﻴﻦ ﺣﺪﺍﻗﻞ ﻳﻚ ﺭﻭﺳﺘﺎ ﻳﺎ ﺷﻬﺮﺳﺘﺎﻥ ۳۰۰ ﻫﻜﺘـﺎﺭﻱ ﺭﺍ ﺗﺤـﺖ ﭘﻮﺷـﺶ ﻧﻘﺸﻪ ﺑﺮﺩﺍﺭﻱ ﻫﻮﺍﻳﻲ ﺑﺎ ﻣﻘﻴﺎﺱ ﺑﺎﻻ ﻗﺮﺍﺭ ﺩﺍﺩﻩ ﻭ ﺳﺮﻳﻌﺎً ﻋﻜﺲ ﻧﻘﺸﻪ ﻫﻮﺍﻳﻲ ﺁﻥ ﺭﺍ ﺗﻮﻟﻴﺪ ﻧﻤﻮﺩ.

ﺍﻳﻦ ﻭﺳﻴﻠﻪ ﻛﻤﻚ ﺑﺴﻴﺎﺭ ﺑﺰﺭﮔﻲ ﻧﻪ ﺗﻨﻬﺎ ﺑﺮﺍﻱ ﻣﻘﺎﻳﺴﻪ ﺷﺮﺍﻳﻂ ﻗﺒﻞ ﻭ ﺑﻌـﺪ ﺍﺯ ﺑﺤـﺮﺍﻥ ﺩﺭ ﻳـﻚ ﺭﻭﺳـﺘﺎ ﻣـﻲ ﺑﺎﺷـﺪ، ﺑﻠﻜـﻪ ﺑـﻪ ﻣـﺪﻳﺮﻳﺖ ﺷـﻬﺮﻱ ﻭ ﺭﻭﺳﺘﺎﻳﻲ ﺍﻳﻦ ﺍﻣﻜﺎﻥ ﺭﺍ ﺧﻮﺍﻫﺪ ﺩﺍﺩ ﻛﻪ ﺑﺘﻮﺍﻧﻨﺪ ﻳﻚ ﻋﻜﺲ ﻧﻘﺸﻪ ﻛﺎﻣﻼً ﻭﺍﺿﺢ ﻭ ﺑـﻪﺭﻭﺯ ﺍﺯ ﺷـﻬﺮ ﻭ ﻳـﺎ ﺭﻭﺳـﺘﺎ ﺩﺍﺷـﺘﻪ ﺑﺎﺷﻨﺪ.

ﺍﻣﺮﻭﺯﻩ ﻋﻜﺴﺒﺮﺩﺍﺭﻱ ﻫﻮﺍﻳﻲ ﺍﻏﻠﺐ ﺑﻪﻃﻮﺭ ﺭﻗﻮﻣﻲ، ﺑﺎ ﻛﻴﻔﻴﺖ ﺑﺴﻴﺎﺭ ﺑﺎﻻ ﺍﻧﺠﺎﻡ ﻣﻲﮔﻴﺮﺩ ﻛـﻪ ﺍﻳـﻦ ﺗﺼـﺎﻭﻳﺮ ﻣﻌﻤـﻮﻻً ﺩﺭ ﺳﻮﺍﻧﺢ ﻃﺒﻴﻌﻲ ﻣﺎﻧﻨﺪ ﺯﻟﺰﻟﻪ ﻛﺎﺭﺑﺮﺩ ﺑﺴﻴﺎﺭﻱ ﺩﺍﺭﺩ. ﺑﻪ ﻋﻨﻮﺍﻥ ﻧﻤﻮﻧﻪ ﻣﻲﺗﻮﺍﻥ ﺑﻪ ﻛﺎﺭﺑﺮﺩ ﻓﺮﺍﻭﺍﻥ ﻋﻜﺲﻫـﺎﻱ ﻫـﻮﺍﻳﻲ ﺗﻬﻴـﻪ ﺷﺪﻩ ﺗﻮﺳﻂ ﺳﺎﺯﻣﺎﻥ ﻧﻘﺸﻪﺑﺮﺩﺍﺭﻱ ﻛﺸﻮﺭ ﻭ ﺗﺼﺎﻭﻳﺮ ﻣﺎﻫﻮﺍﺭﻩﺍﻱ Quick bird ﻣﺮﺗﺒﻂ ﺑﺎ ﺯﻟﺰﻟﻪ ۱۳۸۲ ﺑﻢ ﺍﺷﺎﺭﻩ ﻛﺮﺩ.

ﻧﻘﺸﻪ ﺑﺮﺩﺍﺭﻱ ﺯﻣﻴﻨﻲ : ﺑﻪ ﻋﻠﻢ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ ﺩﻗﻴﻖ ﻭ ﺗﻌﻴﻴﻦ ﻣﻮﻗﻌﻴﺖ ﻧﺴﺒﻲ ﻳﺎ ﻣﻄﻠﻖ ﻋﻮﺍﺭﺽ ﺭﻭﻱ ﺳﻄﺢ ﺯﻣﻴﻦ ﺍﻃﻼﻕ ﻣﻲﺷﻮﺩ.

ﺍﺯ ﺍﻳﻦ ﺗﻌﺮﻳﻒ ﺳﺎﺩﻩ ﭼﻨﻴﻦ ﺑﺮﺩﺍﺷﺖ ﻣﻲﺷﻮﺩ ﻛﻪ ﻫﺪﻑ، ﺗﻌﻴﻴﻦ ﻣﺨﺘﺼﺎﺕ ﻧﻘﺎﻁ ﺩﺭ ﺳﻪ ﺑﻌﺪ ﺍﺳﺖ. ﻣﺨﺘﺼﺎﺕ ﻣﻄﻠـﻮﺏ ﻣـﻲﺗﻮﺍﻧـﺪ ﻣﺨﺘﺼﺎﺕ ﺩﻛﺎﺭﺗﻲ XYZ ﻭ ﻳﺎ ﻣﺨﺘﺼﺎﺕ ﻋﺮﺽ ﻭ ﻃﻮﻝ ﺟﻐﺮﺍﻓﻴـﺎﻳﻲ ﺑﺎﺷـﺪ. ﻣﻌﻤـﻮﻻً ﻋﻤﻠﻴـﺎﺕ ﻧﻘﺸـﻪﺑـﺮﺩﺍﺭﻱ ﺷـﺎﻣﻞ ﺩﻭ ﻣﺮﺣﻠـﻪ ﺑﺮﺩﺍﺷﺖ (ﻳﺎ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ) ﻭ ﻣﺤﺎﺳﺒﻪ ﻭ ﺍﺭﺍﺋﻪ ﻧﺘﺎﻳﺞ ﻛﺎﺭ ﺍﺳﺖ. ﻧﺘﺎﻳﺞ ﻛﺎﺭ ﺑﻪ ﺻﻮﺭﺗﻬﺎﻱ ﺁﻧﺎﻟﻮﮒ (ﻧﻘﺸﻪ، ﻣﻘﺎﻃﻊ ﻃﻮﻟﻲ ﻭ ﻋﺮﺿـﻲ ﻭ (… ﻭ ﻳﺎ ﺭﻗﻮﻣﻲ (ﻣﺎﻧﻨﺪ ﺟﺪﻭﻝﻫﺎ، ﻣﺪﻝﻫﺎﻱ ﺭﻗﻮﻣﻲ ﺯﻣﻴﻦ) ﺍﺭﺍﺋﻪ ﻣﻲﮔﺮﺩﺩ.


ﺳﻴﺴﺘﻢ ﺗﻌﻴﻴﻦ ﻣﻮﻗﻌﻴﺖ ﻣﺎﻫﻮﺍﺭﻩ ﺍﻱ ﺟﻬﺎﻧﻲ ( GPS ) : ﺳﻴﺴﺘﻢ ﺗﻌﻴﻴﻦ ﻣﻮﻗﻌﻴﺖ ﻣﺎﻫﻮﺍﺭﻩ ﺍﻱ، ﺷﺒﻜﻪﺍﻱ ﻣﺘﺸﻜﻞ ﺍﺯ ﻣﺎﻫﻮﺍﺭﻩﻫـﺎ ﻭ ﺍﻳﺴﺘﮕﺎﻩﻫﺎﻱ ﻛﻨﺘﺮﻝ ﺯﻣﻴﻨﻲ ﺍﺳﺖ ﻛﻪ ﻣﻴﺘﻮﺍﻥ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺍﻣﻮﺍﺝ ﺍﺭﺳﺎﻟﻲ ﻣﺎﻫﻮﺍﺭﻩﻫﺎ، ﻣﻮﻗﻌﻴﺖ ﻧﻘﺎﻁ ﺩﺭ ﺳﻄﺢ، ﻳـﺎ ﺩﺭ ﻧﺰﺩﻳﻜﻲ ﺳﻄﺢ ﺯﻣﻴﻦ ﺭﺍ ﺗﻌﻴﻴﻦ ﻛﺮﺩ. GPS ﻳﺎ ﺳﻴﺴﺘﻢ ﻣﻮﻗﻌﻴﺖﻳﺎﺏ ﺟﻬـﺎﻧﻲ، ﺳﻴﺴـﺘﻢ ﺭﺍﻫﺒـﺮﻱ ﻭ ﻣﺴـﻴﺮﻳﺎﺑﻲ ﻣـﺎﻫﻮﺍﺭﻩﺍﻱ ﺍﺳﺖ ﻛﻪ ﺍﺯ ﺷﺒﻜﻪﺍﻱ ﺑﺎ ﺣﺪﺍﻗﻞ ۲۴ ﻣﺎﻫﻮﺍﺭﻩ ﺗﺸﻜﻴﻞ ﺷﺪﻩ ﺍﺳﺖ.

ﺍﻳـﻦ ﻣـﺎﻫﻮﺍﺭﻩﻫـﺎ ﺑـﻪ ﺳـﻔﺎﺭﺵ ﻭﺯﺍﺭﺕ ﺩﻓـﺎﻉ ﺍﻳـﺎﻻﺕ ﻣﺘﺤﺪﻩ ﺳﺎﺧﺘﻪ ﻭ ﺩﺭ ﻣﺪﺍﺭ ﺯﻣﻴﻦ ﻗﺮﺍﺭ ﺩﺍﺩﻩ ﺷﺪﻩﺍﻧﺪ. GPS ﺩﺭ ﺍﺑﺘﺪﺍ ﺑﺮﺍﻱ ﻣﺼﺎﺭﻑ ﻧﻈﺎﻣﻲ ﺗﻬﻴﻪ ﺷـﺪ ﻭﻟـﻲ ﺍﺯ ﺳـﺎﻝ ۱۹۸۰ ﺍﺳﺘﻔﺎﺩﻩ ﻋﻤﻮﻣﻲ ﺁﻥ ﺁﺯﺍﺩ ﺷﺪ. ﺧﺪﻣﺎﺕ ﺍﻳﻦ ﻣﺠﻤﻮﻋﻪ ﺩﺭ ﻫﺮ ﺷﺮﺍﻳﻂ ﺁﺏ ﻭ ﻫﻮﺍﻳﻲ ﻭ ﺩﺭ ﻫـﺮ ﻧﻘﻄـﻪ ﺍﺯ ﻛـﺮﻩ ﺯﻣـﻴﻦ ﺩﺭ ﺗﻤﺎﻡ ﺷﺒﺎﻧﻪﺭﻭﺯ ﺩﺭ ﺩﺳﺘﺮﺱ ﺍﺳﺖ ﻭ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺁﻥ ﺭﺍﻳﮕﺎﻥ ﺍﺳﺖ.

ﻋﻼﻭﻩ ﺑﺮ GPS ، ﺩﻭ ﺳﻴﺴﺘﻢ ﻛﻤﺎﺑﻴﺶ ﻣﺸﺎﺑﻪ ﺩﻳﮕﺮ ﻧﻴﺰ ﻭﺟﻮﺩ ﺩﺍﺭﺩ: ﺳﻴﺴﺘﻢ ﮔﻠﻮﻧﺎﺱ ﻛﻪ ﺍﻛﻨﻮﻥ ﺑﻪﺩﺳﺖ ﻛﺸـﻮﺭ ﺭﻭﺳـﻴﻪ ﺍﺩﺍﺭﻩ ﻣﻲﺷﻮﺩ ﻭ ﺳﻴﺴﺘﻢ ﮔﺎﻟﻴﻠﻪ ﻛﻪ ﻛﺸﻮﺭﻫﺎﻱ ﺍﺭﻭﭘﺎﺋﻲ ﺁﻥ ﺭﺍ ﺑﺮﺍﻱ ﻭﺍﺑﺴﺘﻪ ﻧﺒﻮﺩﻥ ﺑـﻪ ﺳﻴﺴـﺘﻢ ﺁﻣﺮﻳﻜـﺎﺋﻲ GPS ﺳـﺎﺧﺘﻪ ﺍﻧﺪ.ﺑﻪ ﻃﻮﺭ ﻗﻄﻊ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺍﻳﻦ ﺳﻴﺴﺘﻢ ﻫﺎﻱ ﻣﻮﻗﻌﻴﺖﻳﺎﺑﻲ ﻧﻴﺎﺯﻣﻨﺪ ﺩﺳﺘﺮﺳﻲ ﺑﻪ ﮔﻴﺮﻧﺪﻩﻫـﺎﻱ ﻣﺨـﺘﺺ ﺩﺭﻳﺎﻓـﺖ ﺍﻣـﻮﺍﺝ ﺁﻧﻬﺎ ﻣﻲﺑﺎﺷﺪ. ﺗﺼﻮﻳﺮ ﺫﻳﻞ ﻧﻤﺎﻳﻲ ﺍﺯ ﺷﺒﻜﻪ ﻣﺎﻫﻮﺍﺭﻩ ﻫﺎﻱ GPS ﺭﺍ ﻧﺸﺎﻥ ﻣﻴﺪﻫﺪ.

ﺑﺤﺮﺍﻥ ﻭ ﻣﺪﻳﺮﻳﺖ ﺁﻥ

ﺑﺤﺮﺍﻥ ﺣﺎﺩﺛﻪﺍﻱ ﺍﺳﺖ ﻛﻪ ﺑﻪ ﻃﻮﺭ ﻃﺒﻴﻌﻲ ﻭ ﻳﺎ ﺗﻮﺳﻂ ﺑﺸﺮ ﺑﻪ ﻃﻮﺭ ﻧﺎﮔﻬﺎﻧﻲ ﻭ ﻓﺰﺁﻳﻨﺪﻩ ﺑـﻪ ﻭﺟـﻮﺩ ﻣـﻲﺁﻳـﺪ. ﺑـﺮ ﺍﺳـﺎﺱ ﻣﻨﺸﺎء ﺧﻄﺮﺍﺕ، ﺑﻼﻳﺎ ﺭﺍ ﻣﻲ ﺗﻮﺍﻥ ﺑﻪ ﺳﻪ ﮔﺮﻭﻩ ﺍﺻﻠﻲ ﺑﻼﻳﺎﻱ ﻃﺒﻴﻌﻲ، ﺣـﻮﺍﺩﺙ ﺗﻜﻨﻮﻟـﻮﮊﻳﻜﻲ ﻭ ﻓﺠـﺎﻳﻊ ﺍﻧﺴـﺎﻧﻲ ﻃﺒﻘـﻪ ﺑﻨﺪﻱ ﻛﺮﺩ . ﺯﻟﺰﻟﻪ، ﺳﻴﻞ، ﻃﻮﻓﺎﻥ ﺑﺎﺩ، ﺧﺸﻜﺴـﺎﻟﻲ، ﻭ ﺁﺗـﺶ ﺳـﻮﺯﻱ ﭼﻨـﺪ ﻣﺜـﺎﻝ ﺍﺯ ﺑﻼﻳـﺎﻱ ﻃﺒﻴﻌـﻲ ﻫﺴـﺘﻨﺪ.

ﺣـﻮﺍﺩﺙ ﺻﻨﻌﺘﻲ، ﺣﻮﺍﺩﺙ ﺣﻤﻞ ﻭ ﻧﻘﻞ (ﺍﺗﻮﻣﺒﻴﻞ، ﻫﻮﺍﺑﺮﺩ، ﻗﻄﺎﺭ (… ﻭ ﺍﻧﻔﺠﺎﺭ ﺑﻤﺐ ﭼﻨﺪ ﻧﻤﻮﻧﻪ ﺍﺯ ﺑﻼﻳﺎﻱ ﺗﻜﻨﻮﻟﻮﮊﻳﻚ ﻫﺴﺘﻨﺪ ﻭ ﻓﻌﺎﻟﻴﺖ ﻫﺎﻱ ﺗﺮﻭﺭﻳﺴﺘﻲ ﺭﺍ ﻣﻴﺘﻮﺍﻥ ﺩﺭ ﺯﻣﺮﻩ ﻓﺠﺎﻳﻊ ﺍﻧﺴﺎﻧﻲ ﺩﺭﻧﻈﺮ ﮔﺮﻓﺖ.
ﻣﺪﻳﺮﻳﺖ ﺑﺤﺮﺍﻥ ﺑﻪ ﻣﺠﻤﻮﻋﻪ ﺍﻗﺪﺍﻣﺎﺗﻲ ﺍﻃﻼﻕ ﻣﻲﺷﻮﺩ ﻛﻪ ﻗﺒﻞ ﺍﺯ ﻭﻗﻮﻉ، ﺩﺭ ﺣﻴﻦ ﻭﻗﻮﻉ ﻭ ﺑﻌﺪ ﺍﺯ ﻭﻗﻮﻉ ﺳﺎﻧﺤﻪ، ﺟﻬﺖ ﻛﺎﻫﺶ ﻫﺮ ﭼﻪ ﺑﻴﺸﺘﺮ ﺁﺛﺎﺭ ﻭ ﻋﻮﺍﺭﺽ ﺁﻥ ﺍﻧﺠﺎﻡ ﻣﻲﮔﻴﺮﺩ.

ﻣﺪﻳﺮﻳﺖ ﺑﺤﺮﺍﻥ، ﻓﺮﺍﻳﻨﺪ ﺑﺮﻧﺎﻣـﻪ ﺭﻳـﺰﻱ، ﻋﻤﻠﻜـﺮﺩ ﻣﻘﺎﻣـﺎﺕ ،ﺩﺳﺘﮕﺎﻩ ﻫﺎﻱ ﺍﺟﺮﺍﻳﻲ ﺩﻭﻟﺘﻲ ﻭ ﻏﻴﺮ ﺩﻭﻟﺘﻲ، ﺷﻬﺮﺩﺍﺭﻱ ﻭ ﻋﻤﻮﻡ ﺍﺳﺖ، ﺑﺎ ﻣﺸﺎﻫﺪﻩ ﺗﺠﺰﻳﻪ ﻭ ﺗﺤﻠﻴﻞ ﺑﺤﺮﺍﻧﻬﺎ، ﺑﻪ ﺻﻮﺭﺕ ﻳﻜﭙﺎﺭﭼﻪ ﻭ ﻫﻤﺎﻫﻨﮓ ،ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺍﺑﺰﺍﺭ ﻫﺎﻱ ﻣﻮﺟﻮﺩ ﺗﻼﺵ ﻣﻲ ﻛﻨﻨﺪ ﺍﺯ ﺑﺤﺮﺍﻧﻬـﺎ ﭘـﻴﺶ ﮔﻴـﺮﻱ ﻭ ﺯﻣﻴﻨـﻪ ﺭﻓـﻊ ﺁﻥ ﺭﺍ ﻓﺮﺍﻫﻢ ﺳﺎﺯﻧﺪ .

ﻫﺪﻑ ﻣﺪﻳﺮﻳﺖ ﺑﺤﺮﺍﻥ ﻫﻤﺎﻫﻨﮕﻲ ﻭ ﺳﺎﺯﻣﺎﻧﺪﻫﻲ ﻛﻠﻴﻪ ﻋﻨﺎﺻﺮ ﺩﻭﻟﺘﻲ ﻭ ﻏﻴﺮ ﺩﻭﻟﺘﻲ، ﻋﻮﺍﻣـﻞ ﺫﻳـﺮﺑﻂ ﺩﺭ ﻣﺤﻴﻂ ﺑﺤﺮﺍﻥ ﺑﻪ ﻫﻤﺮﺍﻩ ﺑﺮﻧﺎﻣﻪ ﺭﻳﺰﻱ، ﺍﺗﺨﺎﺫ ﺳﻴﺎﺳﺖ ﻫﺎﻱ ﻻﺯﻡ ﻭ ﺿﺮﻭﺭﻱ ﺍﺳﺖ.

ﻣﺪﻳﺮﻳﺖ ﺑﺤﺮﺍﻥ، ﭼﺮﺧﻪ ﺍﻱ ﺩﺭ ﺯﻣﺎﻥ ﺍﺳﺖ ﻭ ﻫﺪﻑ ﻧﺠﺎﺕ ﺟﺎﻥ ﻭ ﻣﺎﻝ ﺍﺳﺖ ﻭ ﺍﺯ ﺁﻧﺠﺎ ﻛﻪ ﻫﺪﻑ ﺁﻣﺎﺩﻩ ﺷﺪﻥ ﺑـﺮﺍﻱ ﺑﺤﺮﺍﻥ ﺑﻌﺪﻱ ﺍﺳﺖ، ﺑﺮﺍﻱ ﻛﻨﺘﺮﻝ ﺑﺤﺮﺍﻥ ﻭ ﺭﻓﻊ ﺁﻥ ﻧﻴﺎﺯ ﺑـﻪ ﺁﻣـﺎﺩﮔﻲ ﺍﺯ ﭘـﻴﺶ ﻭ ﺍﻟﮕـﻮﻱ ﺍﺯ ﭘـﻴﺶ ﺗﻌﻴـﻴﻦ ﺷـﺪﻩ ﺑـﺮﺍﻱ ﻳﻜﭙﺎﺭﭼﮕﻲ ﻭ ﮔﺮﺩﺵ ﺍﻃﻼﻋﺎﺕ، ﺳﺎﺯﻣﺎﻧﺪﻫﻲ، ﺗﺼﻤﻴﻢﮔﻴﺮﻱ، ﺑﺮﻧﺎﻣﻪﺭﻳﺰﻱ ﻭ ﻫﻤﺎﻫﻨﮕﻲ ﻣﻲﺑﺎﺷﺪ.

ﺗﺒﻴﻴﻦ ﺿﺮﻭﺭﺕ ﺩﺳﺘﺮﺳﻲ ﺑﻪ ﺍﻃﻼﻋﺎﺕ ﻣﻜﺎﻧﻲ

ﭼﻪ ﺧﻄﺮﺍﺗﻲ ﻳﻚ ﺷﻬﺮ ﻳﺎ ﻳﻚ ﻣﻨﻄﻘﻪ ﺭﺍ ﺗﻬﺪﻳﺪ ﻣﻴﻜﻨﺪ ﻭ ﺍﻳﻦ ﺧﻄﺮﺍﺕ ﻛﺠﺎﻫﺎ ﻗﺮﺍﺭ ﺩﺍﺭﻧﺪ. ﻛـﺪﺍﻡ ﺳـﺎﺧﺘﻤﺎﻧﻬﺎ ﺍﺣﺘﻤـﺎﻝ ﺗﺨﺮﻳﺐﺷﺎﻥ ﺩﺭ ﺍﺛﺮ ﺯﻟﺰﻟﻪ ﻭﺟﻮﺩ ﺩﺍﺭﺩ؟ﭼﻪ ﺗﻌﺪﺍﺩ ﺟﻤﻌﻴﺖ ﺩﺭ ﻣﺤﺪﻭﺩﻩ ﺳﻴﻞ ﮔﻴﺮ ﺷﻬﺮ ﺳﻜﻮﻧﺖ ﺩﺍﺭﻧـﺪ؟ ﺁﻣـﺎﺩﮔﻲ ﺩﺭ ﺑﺮﺍﺑﺮ ﻳﻚ ﺳﺎﻧﺤﻪ ﻣﻌﻤﻮﻻً ﺑﺎ ﺷﻨﺎﺧﺖ ﺧﻄﺮﺍﺕ ﻣﻮﺟﻮﺩ ﺩﺭ ﻳﻚ ﻣﺤﻞ ﻭ ﻣﻴﺰﺍﻥ ﺍﻣﻼﻙ ﻭ ﺩﺍﺭﺍﺋﻴﻬﺎﻱ ﺍﻧﺴـﺎﻧﻲ ﻭ ﻓﻴﺰﻳﻜـﻲ ﺩﺭ ﺁﻥ ﻣﺤﻞ ﺁﻏﺎﺯ ﻣﻴﺸﻮﺩ.

ﻋﺪﻡ ﻭﺟﻮﺩ ﺍﻳﻦ ﺍﻃﻼﻋﺎﺕ ﺑﺎﻋﺚ ﻣﻲﺷﻮﺩ ﺗﺎ ﻣﺪﻳﺮﺍﻥ ﻗﺎﺩﺭ ﺑﻪ ﺍﺗﺨﺎﺫ ﺗﺼﻤﻴﻤﺎﺕ ﺩﺭﺳﺖ ﻧﺸﻮﻧﺪ ﻛﻪ ﻧﺘﻴﺠﻪ ﺁﻥ ﻛﻨﺪ ﺷـﺪﻥ ﺳﺮﻋﺖ ﺍﻣﺪﺍﺩﺭﺳﺎﻧﻲ، ﻧﺎﻫﻤﺎﻫﻨﮕﻲ ﺩﺭ ﺗﺼﻤﻴﻤﺎﺕ ﻭ ﻓﻌﺎﻟﻴـﺖﻫـﺎ، ﻋـﺪﻡ ﺍﺳـﺘﻔﺎﺩﻩ ﺑﻬﻴﻨـﻪ ﺍﺯ ﻣﻨـﺎﺑﻊ ﻣﻮﺟـﻮﺩ ﻭ ﺑﻄـﻮﺭ ﻛﻠـﻲ ﻣﺪﻳﺮﻳﺖ ﻧﺎﻣﻨﺎﺳﺐ ﻭ ﻧﺎﻫﻤﺎﻫﻨﮓ ﺑﺤﺮﺍﻥ ﺍﺳﺖ ﻛﻪ ﺿﺮﺭ ﻭ ﺧﺴﺎﺭﺍﺕ ﺟﺎﻧﻲ، ﻣﺎﻟﻲ ﻭ ﻋﺎﻃﻔﻲ ﺟﺒﺮﺍﻥ ﻧﺎﭘﺬﻳﺮ ﺁﻥ ﺩﺭ ﻭﻫﻠـﻪ ﺍﻭﻝ ﻣﺘﻮﺟﻪ ﻣﺮﺩﻡ ﺁﺳﻴﺐ ﺩﻳﺪﻩ ﺍﺳﺖ.


ﻗﺴﻤﺖ ﺍﻋﻈﻢ ﺍﻃﻼﻋﺎﺕ ﻣﻮﺭﺩ ﻧﻴﺎﺯ ﻣﺪﻳﺮﻳﺖ ﺑﺤﺮﺍﻥ، ﺑﻪ ﻣﻜﺎﻥ ﻳﺎ ﻣﻮﻗﻌﻴﺘﻲ ﺧﺎﺹ ﺑﺮ ﺭﻭﻱ ﺯﻣﻴﻦ ﻣﺮﺑﻮﻁ ﻣﻲ ﺷـﻮﻧﺪ، ﻟـﺬﺍ ﺍﻃﻼﻋﺎﺕ ﻣﻜﺎﻧﻲ (GIS) ﻭ ﺑﻮﻳﮋﻩ ﻓﻨﺎﻭﺭﻳﻬﺎﻱ ﻣﺮﺑﻮﻃﻪ ﺟﻬﺖ ﺗﺼﻤﻴﻢ ﮔﻴـﺮﻱ ﮔﺮﻭﻫـﻲ ﻣـﺪﻳﺮﻳﺖ ﺑﺤـﺮﺍﻥ ﺑﺴـﻴﺎﺭ ﺿـﺮﻭﺭﻱ ﻣـﻲ ﺑﺎﺷﻨﺪ .

ﺍﻣﺎ ﺑﺎ ﻭﺟﻮﺩ ﭼﻨﻴﻦ ﻧﻘﺸﻲ، ﻣﻄﺎﻟﻌﺎﺕ ﮔﻮﻳﺎﻱ ﺁﻥ ﺍﺳﺖ ﻛﻪ ﺩﺭ ﺣﺎﻝ ﺣﺎﺿـﺮ ﻣﺸـﻜﻼﺕ ﻣﺘﻌـﺪﺩﻱ ﺩﺭ ﺍﺭﺗﺒـﺎﻁ ﺑﺎﺗﻮﻟﻴـﺪ ﻭ ﺟﻤﻊ ﺁﻭﺭﻱ، ﺍﻧﺘﺸﺎﺭ، ﺩﺳﺘﺮﺳﻲ ﻭ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺩﺍﺩﻩ ﻫﺎﻱ ﻣﻜﺎﻧﻲ ﻗﺎﺑﻞ ﺍﻋﺘﻤـﺎﺩ، ﺩﻗﻴـﻖ ﻭ ﺑﻬﻨﮕـﺎﻡ ﺑـﺮﺍﻱ ﻣـﺪﻳﺮﻳﺖ ﺑﺤـﺮﺍﻥ ﻭﺟﻮﺩ ﺩﺍﺭﺩ. ﻣﺸﻜﻼﺕ ﻣﺮﺑﻮﻁ ﺑﻪ ﺩﺍﺩﻩ ﻫﺎﻱ ﻣﻜﺎﻧﻲ (GIS) ، ﭘﺲ ﺍﺯ ﺑﺮﻭﺯ ﺑﺤـﺮﺍﻥ ﻭ ﺩﺭ ﺯﻣـﺎﻥ ﭘﺎﺳـﺨﮕﻮﻳﻲ ﺑـﻪ ﺑﺤـﺮﺍﻥ ﺧﻴﻠـﻲ ﺟﺪﻱ ﺗﺮ ﻣﻲ ﺷﻮﺩ.

ﺩﺭ ﺟﺮﻳﺎﻥ ﻳﻚ ﺑﺤﺮﺍﻥ، ﻭﺍﻛﻨﺶ ﻣﻮﺛﺮ ﻣﺘﻀﻤﻦ ﺗﻬﻴﻪ ﻧﻘﺸﻪ ﻣﺮﺑﻮﻁ ﺑﻪ ﺣﺎﺩﺛﻪ، ﺑﺮﭘﺎ ﻛﺮﺩﻥ ﻣﻘﺪﻣﺎﺕ، ﺍﻳﺠﺎﺩ ﻭ ﺗﻮﺳﻌﻪ ﻃﺮﺡ ﻫﺎﻱ ﻋﻤﻠﻴﺎﺗﻲ ﻭ ﺍﺟﺮﺍﻱ ﺑﺮﻧﺎﻣﻪﺍﻱ ﺑﻪ ﻣﻨﻈﻮﺭ ﻣﺤﺎﻓﻈﺖ ﺍﺯ ﺟﺎﻥ ﻭ ﻣﺎﻝ ﻭ ﻣﺤﻴﻂ ﻣﻲﺑﺎﺷـﺪ.

ﻧﻤـﻲﺗـﻮﺍﻥ ﺑﻼﻳـﺎﻱ ﻃﺒﻴﻌـﻲ ﺭﺍ ﺭﻳﺸﻪ ﻛﻦ ﻛﺮﺩ، ﻭﻟﻲ ﻣﻲﺗﻮﺍﻥ ﺿﺮﺭﻫﺎ ﺭﺍ ﺍﺯ ﻃﺮﻳﻖ ﺁﮔﺎﻫﻲ ﺑﺠﺎ ﻭ ﺑﻪ ﻣﻮﻗﻊ ﺍﺯ ﺑﻼﻳﺎﻱ ﻣﺤﺘﻤﻞ ﻭ ﺍﺛﺮﺍﺕ ﺁﻥ ﻭ ﺑـﺎ ﺗﻮﺳـﻌﻪ ﻳﻚ ﺳﻴﺴﺘﻢ ﻫﺸﺪﺍﺭ ﺩﻫﻨﺪﻩ ﻣﻨﺎﺳﺐ ﻭ ﺁﻣﺎﺩﻩ ﺳﺎﺯ ﺩﺭ ﻣﻘﺎﺑﻞ ﺑﻼﻳﺎ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺗﻜﻨﻮﻟﻮﮊﻱ ﺟﻐﺮﺍﻓﻴﺎﻳﻲ، ﻛﺎﻫﺶ ﺩﺍﺩ.

ﺩﺭ ﺍﻳﻦ ﺭﺍﺳﺘﺎ ﺍﻳﺠﺎﺩ ﺷﺒﻜﻪﻫﺎﻱ ﺍﻃﻼﻋﺎﺗﻲ (GIS) ﻳﻜﭙﺎﺭﭼﻪ ﻭ ﮔﺴﺘﺮﺩﻩ ﻛﻪ ﺑﺘﻮﺍﻧﺪ ﺍﻃﻼﻋﺎﺕ ﻣﻮﺭﺩ ﻧﻴـﺎﺯ ﻣـﺪﻳﺮﻳﺖ ﺑﺤـﺮﺍﻥ ﺭﺍ ﺩﺭ ﻫﺮ ﺯﻣﺎﻥ ﻭ ﺩﺭ ﻫﺮ ﻣﻜﺎﻥ ﺑﺮﺍﻱ ﻣﺪﻳﺮﺍﻥ ﻭ ﺳﻴﺎﺳﺘﮕﺬﺍﺭﺍﻥ ﺍﻣﺮ ﻣﺪﻳﺮﻳﺖ ﺑﺤﺮﺍﻥ ﻓﺮﺁﻫﻢ ﺁﻭﺭﺩ، ﺍﻣﺮﻱ ﺣﻴﺎﺗﻲ ﺍﺳﺖ. ﺑﻌـﻼﻭﻩ ﺑﻪ ﺍﺷﺘﺮﺍﻙﮔﺬﺍﺭﻱ ﺗﺠﺮﺑﻴﺎﺕ ﻭ ﺩﺳﺘﻮﺭﺍﻟﻌﻤﻞﻫﺎﻱ ﺍﺟﺮﺍﻳﻲ ﻣﺮﺗﺒﻂ ﺑﺎ ﻣﺪﻳﺮﻳﺖ ﺑﺤﺮﺍﻥ ﻧﻴﺰ ﻣﻲﺗﻮﺍﻧﺪ ﺑﺨﺸﻲ ﺍﺯ ﻣﺎﻣﻮﺭﻳـﺖ ﺷﺒﻜﻪ ﺍﻃﻼﻋﺎﺕ ﺑﺤﺮﺍﻥ ﺑﺎﺷﺪ.

ﻃﻴﻒ ﻭﺳﻴﻊ ﺍﻃﻼﻋﺎﺕ ﻣﻜﺎﻧﻲ (GIS) ﻣﻮ ﺭﺩ ﻧﻴﺎﺯ ﺩﺭ ﻣﺪﻳﺮﻳﺖ ﺣـﻮﺍﺩﺙ، ﺳـﺒﺐ ﺷـﺪﻩ ﺍﺳـﺖ ﻛـﻪ ﻫـﻴﭻ ﻳـﻚ ﺍﺯ ﺳـﺎﺯﻣﺎﻥ ﻫـﺎ ﻭ ﻧﻬﺎﺩﻫﺎﻱ ﻣﺮﺗﺒﻂ ﻧﺘﻮﺍﻧﻨﺪ ﺍﻃﻼﻋﺎﺕ ﻣﻜﺎﻧﻲ ﻣﻮﺭﺩ ﻧﻴﺎﺯﺷـﺎﻥ ﺭﺍ ﭘـﻴﺶ ﻭ ﺑﻼﻓﺎﺻـﻠﻪ ﭘـﺲ ﺍﺯ ﻭﻗـﻮﻉ ﺣﺎﺩﺛـﻪ ﺟﻤـﻊ ﺁﻭﺭﻱ ﻭ ﺭﻭﺯﺁﻣﺪ ﺳﺎﺯﻧﺪ. ﻫﻤﭽﻨﻴﻦ ﺍﻧﺘﺨﺎﺏ ﻳﻚ ﺳﺎﺯﻣﺎﻥ ﺑـﻪ ﻋﻨـﻮﺍﻥ ﻣﺘـﻮﻟﻲ ﺟﻤـﻊ ﺁﻭﺭﻱ ﻭ ﺭﻭﺯﺁﻣﺪﺳـﺎﺯﻱ ﺗﻤـﺎﻣﻲ ﺍﻃﻼﻋـﺎﺕ ﻣﻜﺎﻧﻲ (GIS) ﻣﻮﺭﺩ ﻧﻴﺎﺯ ﺳﺎﺯﻣﺎﻥ ﻫﺎ، ﺍﻣﻜﺎﻥ ﭘﺬﻳﺮ ﻧﻴﺴﺖ.

ﺍﺯ ﺍﻳﻦ ﺭﻭ ﺳﺎﺯﻣﺎﻥ ﻫﺎﻱ ﺩﺭﮔﻴﺮ ﺩﺭ ﻣﺪﻳﺮﻳﺖ ﺣﻮﺍﺩﺙ ﺑﺎﻳﺪ ﺩﺭ ﻗﺎﻟـﺐ ﺯﻳﺮﺳﺎﺧﺘﻲ ﺍﺯ ﭘﻴﺶ ﺗﻌﻴﻴﻦ ﺷﺪﻩ، ﺍﻃﻼﻋﺎﺕ ﻣﻜﺎﻧﻲ ﻣﻮﺭﺩ ﻧﻴﺎﺯ ﺭﺍ ﺟﻤﻊ ﺁﻭﺭﻱ ﻛﻨﻨﺪ ﻭ ﺑﺎ ﺑﻪ ﺍﺷﺘﺮﺍﻙ ﮔﺬﺍﺭﻱ ﺁﻥ، ﺯﻣﻴﻨـﻪ ﺩﺳﺘﺮﺳﻲ ﺳﺎﻳﺮ ﺳﺎﺯﻣﺎﻥ ﻫﺎ ﺑﻪ ﺍﻳﻦ ﺍﻃﻼﻋﺎﺕ ﺭﺍ ﻓـﺎﻫﻢ ﺁﻭﺭﻧـﺪ. ﺍﻳﺠـﺎﺩ ﻳـﻚ ﻣـﺪﻝ ﻣﺸـﺎﺭﻛﺘﻲ ﺑـﺮﺍﻱ ﺟﻤـﻊ ﺁﻭﺭﻱ ﻭ ﺑـﻪ ﺍﺷﺘﺮﺍﻙ ﮔﺬﺍﺭﻱ ﺍﻃﻼﻋﺎﺕ ﻣﻜﺎﻧﻲ ﻣﻲ ﺗﻮﺍﻧﺪ ﻣﺸﻜﻼﺕ ﻧﺎﻣﺒﺮﺩﻩ ﺩﺭﺧﺼﻮﺹ ﺗﻮﻟﻴﺪ، ﺩﺳﺘﺮﺳﻲ ﺑﻪ ﺍﻃﻼﻋـﺎﺕ ﻣﻜـﺎﻧﻲ (GIS) ﻭ ﺗﻮﺯﻳﻊ ﺁﻥ ﺭﺍ ﺑﺮﺍﻱ ﻣﺪﻳﺮﺍﻥ ﺑﺮﻃﺮﻑ ﺳﺎﺯﺩ.  

ﺩﺭ ﺍﻳﻦ ﺑﺎﺭﻩ ﺯﻳﺮ ﺳﺎﺧﺖ ﺩﺍﺩﻩ ﻣﻜﺎﻧﻲ ( SDI ) ﺑﻌﻨﻮﺍﻥ ﻓﻌـﺎﻟﻴﺘﻲ ﺟـﺪﻱ ﺩﺭ ﺩﻧﻴـﺎ ﺩﺭ ﺟﻬـﺖ ﻣـﺪﻳﺮﻳﺖ ﺩﺍﺩﻩﻫـﺎﻱ ﻣﻜـﺎﻧﻲ(GIS) ﻣﻄﺮﺡ ﺷﺪﻩ ﺍﺳﺖ. ﺯﻳﺮﺳﺎﺧﺖ ﺩﺍﺩﻩ ﻣﻜﺎﻧﻲ ﺭﻭﺷﻲ ﻧﻮ ﺩﺭ ﻣﺪﻳﺮﻳﺖ ﺩﺍﺩﻩﻫﺎﻱ ﻣﻜﺎﻧﻲ ﺑﺎ ﺗﻜﻴﻪ ﺑﺮ ﻣﺸـﺎﺭﻛﺖ ﻭ ﻫﻤﻜـﺎﺭﻱ ﺳﺎﺯﻣﺎﻥﻫﺎﻱ ﻣﺨﺘﻠﻒ ﺩﺭ ﺟﻤﻊﺁﻭﺭﻱ، ﺑﻪ ﻫﻨﮕﺎﻡﺭﺳﺎﻧﻲ، ﺫﺧﻴﺮﻩﺳﺎﺯﻱ ﻭ ﺑﻪ ﺍﺷﺘﺮﺍﻙﮔﺬﺍﺭﻱ ﺩﺍﺩﻩﻫﺎﻱ ﻣﻜﺎﻧﻲ ﺍﺳﺖ.

ﭼﺎﺭﭼﻮﺏﻫﺎﻱ ﺯﻳﺮﺳﺎﺧﺖ ﺩﺍﺩﻩ ﻣﻜﺎﻧﻲ ﺩﺍﺭﺍﻱ ﺍﺭﻛﺎﻥ ﺍﺻﻠﻲ: ﺩﺍﺩﻩﻫﺎ، ﺍﺳﺘﺎﻧﺪﺍﺭﺩﻫﺎ، ﺳﻴﺎﺳﺖﻫﺎ، ﺷﺒﻜﻪﻫـﺎﻱ ﺩﺳﺘﺮﺳـﻲ، ﻓﻨﺎﻭﺭﻱﻫﺎ، ﺳﺎﺯﻣﺎﻥﻫﺎ ﻭ ﺍﻓﺮﺍﺩ ﺍﺳﺖ ﻛﻪ ﺑﺎ ﺷﻨﺎﺳﺎﻳﻲ ﻭﺿﻊ ﻣﻮﺟﻮﺩ ﻭ ﻧﻴﺎﺯﻣﻨﺪﻱﻫﺎ ﺩﺭ ﻫﺮ ﺭﻛﻦ ﻭ ﺑـﺮﺁﻭﺭﺩﻩ ﻛـﺮﺩﻥ ﺁﻧﻬـﺎ ﻣﻲﺗﻮﺍﻥ ﻳﻚ ﻣﺤﻴﻂ ﻣﺸﺎﺭﻛﺘﻲ ﻣﻨﺎﺳﺐ ﻭ ﻋﻤﻠﻴﺎﺗﻲ ﺑﺮﺍﻱ ﻣﺪﻳﺮﻳﺖ ﺩﺍﺩﻩﻫﺎﻱ ﻣﻜﺎﻧﻲ ﺩﺍﺷﺖ. ﭘـﺲ ﺑـﺎ ﻃﺮﺍﺣـﻲ ﻭ ﺍﻳﺠـﺎﺩ ﺍﻳﻦ ﭼﺎﺭﭼﻮﺏﻫﺎ ﺑﺮﺍﻱ ﻣﺪﻳﺮﻳﺖ ﺑﺤﺮﺍﻥ، ﻣﻲﺗﻮﺍﻥ ﺯﻳﺮﺳﺎﺧﺖ ﺍﻃﻼﻋﺎﺗﻲ ﻣﻮﺭﺩ ﻧﻴﺎﺯ ﻣﺪﻳﺮﻳﺖ ﺑﺤﺮﺍﻥ ﺭﺍ ﻓﺮﺍﻫﻢ ﻛﺮﺩ.

ﺩﺭ ﺍﻳﺮﺍﻥ ﺳﺎﺯﻣﺎﻥ ﻫﺎ ﻭ ﺍﺭﮔﺎﻥ ﻫﺎﻱ ﺩﻭﻟﺘﻲ ﻭ ﻏﻴﺮ ﺩﻭﻟﺘﻲ ﺳﺎﻝ ﻫﺎﺳﺖ ﻛﻪ ﺍﻗﺪﺍﻡ ﺑﻪ ﺍﻳﺠﺎﺩ ﭘﺎﻳﮕﺎﻩ ﻫﺎﻱ ﻣﻜﺎﻥ ﻣﺤﻮﺭ ﻣﺒﺘﻨﻲ ﺑﺮ (GIS) ﻧﻤﻮﺩﻩ ﺍﻧﺪ ﺍﻣﺎ ﺗﺎﻛﻨﻮﻥ ﭘﺎﻳﮕﺎﻩ ﻓﻌﺎﻟﻲ ﻛﻪ ﺑﺘﻮﺍﻧﺪ ﺧﺪﻣﺎﺕ ﻻﺯﻡ ﺭﺍ ﺑﻪ ﻣﺮﺩﻡ ﻭ ﻣﺪﻳﺮﺍﻥ ﻓﺮﺍﻫﻢ ﺳﺎﺯﺩ ﺗﻘﺮﻳﺒﺎً ﺩﺭ ﻫـﻴﭻ ﺷﻬﺮﻱ ﺍﺯ ﻛﺸﻮﺭ ﻭﺟﻮﺩ ﻧﺪﺍﺭﻧﺪ. ﻳﻜﻲ ﺍﺯ ﺩﻻﻳﻞ ﻋﺪﻡ ﻭﻗﻮﻉ ﺍﻳﻦ ﻣﻬﻢ ﺩﺭﻙ ﻧﺎﺩﺭﺳـﺖ ﺳـﺎﺯﻣﺎﻧﻬﺎ ﺍﺯ ﺿـﺮﻭﺭﺕ ﺗﺤﻠﻴـﻞ ﻫﺰﻳﻨﻪ ﻭ ﻓﺎﻳﺪﻩ ﺩﺭ ﻃﻮﻝ ﺯﻣﺎﻥ ﺩﺭ ﻗﺎﻟﺐ ﻳﻚ ﺳﻴﺴﺘﻢ ﻣﻨﺴﺠﻢ ﺍﻃﻼﻋﺎﺕ ﺟﻐﺮﺍﻓﻴﺎﻳﻲ ﺍﺳﺖ.

ﺳﺎﻣﺎﻧﻪ ﺍﻃﻼﻋﺎﺕ ﺟﻐﺮﺍﻓﻴﺎﻳﻲ (GIS)

(GIS) ، ﻣﺠﻤﻮﻋﻪ ﺍﻱ ﻣﺘﺸﻜﻞ ﺍﺯ ﻧﺮﻡ ﺍﻓﺰﺍﺭ، ﺳﺨﺖ ﺍﻓﺰﺍﺭ، ﺩﺍﺩﻩ ﻫﺎﻱ ﻣﻜـﺎﻧﻲ ﻭﺗﻮﺻـﻴﻔﻲ، ﺭﻭﺷـﻬﺎ، ﻭ ﻛـﺎﺭﺑﺮﺍﻥ ﺁﻥ ﺍﺳـﺖ. ﻣﺰﻳﺖ ﻋﻤﺪﻩ (GIS) ﺑﺮ ﺭﻭﺵ ﭘﺎﻳﮕﺎﻩ ﺩﺍﺩﻩ ﻫﺎ ﻭ ﺳﺎﻳﺮ ﻧﺮﻡ ﺍﻓﺰﺍﺭﻫﺎﻱ ﺭﺍﻳﺎﻧﻪ ﺍﻱ ﮔﺮﺍﻓﻴﻜـﻲ ﺗﻮﺍﻧـﺎﺋﻲ ﺍﻧﺠـﺎﻡ ﺍﻧـﻮﺍﻉ ﺗﺠﺰﻳـﻪ ﻭ ﺗﺤﻠﻴﻞ ﻫﺎ ﻭ ﭘﺮﺩﺍﺯﺵ ﺩﺍﺩﻩ ﻫﺎﻱ ﻣﻜﺎﻧﻲ ﻭ ﺗﻮﺻﻴﻔﻲ ﺑﺎ ﻫﻢ ﻭ ﺑﻪ ﻃﻮﺭ ﻳﻜﺠﺎ ﻣﻲ ﺑﺎﺷﺪ.

ﺑﻪ ﻋﺒﺎﺭﺗﻲ ﺩﻳﮕﺮ GIS ، ﻗﺎﺩﺭ ﺍﺳﺖ ﺩﺍﺩﻩﻫﺎﻱ ﻣﻜﺎﻧﻲ ﻭ ﺗﻮﺻﻴﻔﻲ ﺭﺍ ﭘﺲ ﺍﺯ ﭘﺮﺩﺍﺯﺵ ﺑﻪ ﺍﻃﻼﻋـﺎﺕ ﺍﺭﺯﻧـﺪﻩ ﻭ ﻣـﻮﺭﺩ ﻧﻴـﺎﺯ ﻛﺎﺭﺑﺮﺍﻥ ﺗﺒﺪﻳﻞ ﻧﻤﺎﻳﺪ.

ﺗﻘﺮﻳﺒﺎً ﺗﻤﺎﻡ ﻧﻴﺎﺯﻣﻨﺪﻱ ﻫﺎﻱ ﺭﻭﺯﺍﻧﻪ ﻣﺎ ﻭ ﭘﺮﺳﺶ ﻫﺎﺋﻲ ﺍﺯ ﻗﺒﻴﻞ ﻛﺠﺎ، ﭼﻪ ﻭﻗﺖ، ﭼﮕﻮﻧـﻪ ﻭ ﭼـﺮﺍ، ﻫﻤﮕﻲ ﺑﻄﻮﺭ ﺁﺷﻜﺎﺭ ﻳﺎ ﭘﻨﻬﺎﻥ ﺑﺎ ﻣﻮﻗﻌﻴﺖ ﻣﻜﺎﻧﻲ ﺍﺷﻴﺎء ﻳﺎ ﺍﺷﺨﺎﺹ ﻣﺮﺑـﻮﻁ ﻣـﻲ ﮔﺮﺩﻧـﺪ، ﺑـﻪ ﻫﻤـﻴﻦ ﺩﻟﻴـﻞ ﺗﻬﻴـﻪ ﻧﻘﺸﻪ ﺭﻗﻮﻣﻲ ﺑﺨﺶ ﺍﺳﺎﺳﻲ (GIS) ﺭﺍ ﺗﺸﻜﻴﻞ ﻣﻲ ﺩﻫﺪ. (GIS) ﺩﺭ ﻣﺪﻳﺮﻳﺖ ﺑﺤﺮﺍﻥ ﻭ ﺳﻮﺍﻧﺢ ﺍﻳﻦ ﺍﻣﻜﺎﻥ ﺭﺍ ﻓـﺮﺍﻫﻢ ﻣـﻲ ﺁﻭﺭﺩ ﺗـﺎ ﻛﻠﻴﻪ ﺩﺍﺩﻩ ﻫﺎﻱ ﻣﻜﺎﻧﻲ ﻣﺮﺑﻮﻃﻪ ﺑﻪ ﻫﻤﺮﺍﻩ ﻓﺎﻛﺘﻮﺭﻫﺎﻱ ﺩﺧﻴﻞ ﺩﺭ ﻳﻚ ﺑﺎﻧﻚ ﺍﻃﻼﻋﺎﺗﻲ ﻭﺍﺣﺪ ﻛـﻪ ﺩﺍﺭﺍﻱ ﻳـﻚ ﺳﻴﺴـﺘﻢ ﻛﺎﻣﭙﻴﻮﺗﺮﻱ ﺑﺮﺍﻱ ﺩﺍﺩﻩ ﻫﺎﻱ ﺭﻗﻮﻣﻲ ﺍﺳﺖ، ﺫﺧﻴﺮﻩ ﮔﺮﺩﺩ.

ﺩﺭ ﺻﻮﺭﺕ ﻋﺪﻡ ﻭﺟﻮﺩ ﺍﻳﻦ ﻗﺎﺑﻠﻴﺖ(GIS)، ﻛﻠﻴـﻪ ﻣﺮﺍﻛـﺰ، ﺍﺩﺍﺭﺍﺕ، ﺳﺎﺯﻣﺎﻥ ﻫﺎ ﻭ ﻧﻬﺎﺩﻫﺎﻱ ﺩﻭﻟﺘﻲ ﻭ ﻣﺮﺩﻣﻲ ﻛﻪ ﺑﻪ ﻧﺤـﻮﻱ ﺩﺭ ﺍﻣـﺮ ﻣـﺪﻳﺮﻳﺖ ﺑﺤـﺮﺍﻥ ﺩﺧﻴـﻞ ﻣـﻲ ﺑﺎﺷـﻨﺪ ﺑـﺎ ﻣﺸـﻜﻞ ﻋـﺪﻡ ﺩﺳﺘﺮﺳﻲ ﺑﻪ ﺍﻃﻼﻋﺎﺕ ﺑﻪ ﺭﻭﺯ ﺩﺭ ﻣﺤﺪﻭﺩﻩ ﺷﻬﺮﻱ ﻣﻮﺍﺟﻪ ﺧﻮﺍﻫﻨﺪ ﺑﻮﺩ.

ﻛﻪ ﺑﻪ ﻫﻨﮕﺎﻡ ﻭﻗﻮﻉ ﺑﺤﺮﺍﻥ ﺍﻳﻦ ﻣﺴـﺎﻟﻪ ﺧـﻮﺩ ﺭﺍ ﺑﻪ ﺻﻮﺭﺕ ﺿﺮﺭ ﻭ ﺯﻳﺎﻥ ﻫﺎﻱ ﺟﺎﻧﻲ ﻭ ﻣﺎﻟﻲ ﻧﻤﺎﻳﺎﻥ ﺳﺎﺧﺘﻪ ﻭ ﺍﻧﺠﺎﻡ ﻫﺮﮔﻮﻧـﻪ ﭘـﻴﺶ ﺑﻴﻨـﻲ، ﺑـﺮﺁﻭﺭﺩ، ﺗﺼـﻤﻴﻢ ﺳـﺎﺯﻱ ﻭ ﺗﺼﻤﻴﻢ ﮔﻴﺮﻱ ﻭ ﺑﺮﻧﺎﻣﻪ ﺭﻳﺰﻱ ﺑﺮﺍﻱ ﻓﺎﺯﻫﺎﻱ ﻣﺪﻳﺮﻳﺖ ﺑﺤﺮﺍﻥ ﺭﺍ ﺑﺎﻣﺸﻜﻞ ﻣﻮﺍﺟﻪ ﺧﻮﺍﻫﺪ ﻛﺮﺩ.

ﺗﺠﺮﺑﻴﺎﺕ ﺟﻬﺎﻧﻲ ﻛﺎﺭﺑﺮﺩ GIS ﺩﺭ ﻣﺪﻳﺮﻳﺖ ﺑﺤﺮﺍﻥ

ﺍﻣﺮﻭﺯﻩ ﺩﺭ ﺩﻧﻴﺎ ﺟﻤﻊﺁﻭﺭﻱ، ﺑﻪ ﺍﺷﺘﺮﺍﻙﮔﺬﺍﺭﻱ ﻭ ﺑﻪﺭﻭﺯﺭﺳﺎﻧﻲ ﺩﺍﺩﻩﻫﺎﻱ ﻣﻮﺭﺩ ﻧﻴﺎﺯ ﺩﺭ ﻫﻤﻪ ﺯﻣﻴﻨﻪﻫﺎ ﻋﻠـﻲﺍﻟﺨﺼـﻮﺹ ﻣﺪﻳﺮﻳﺖ ﺑﺤﺮﺍﻥ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ GIS ﺗﺴﻬﻴﻞ ﺷﺪﻩ ﺍﺳﺖ. ﺑﺪﻳﻦ ﺗﺮﺗﻴﺐ ﭘﺮﻭﮊﻩﻫﺎﻱ ﻣﺨﺘﻠﻔﻲ ﺩﺭ ﻛﺸﻮﺭﻫﺎﻱ ﮔﻮﻧﺎﮔﻮﻥ ﺑﺮﺍﻱ ﺗﻮﺳﻌﻪ ﺍﻳﻦ ﺳﻴﺴﺘﻤﻬﺎ ﺍﻧﺠﺎﻡ ﮔﺮﻓﺘﻪ ﺍﺳﺖ ﺗﺎ ﺑﺎ ﺗﻜﻤﻴﻞ ﺯﻳﺮﺳﺎﺧﺘﺎﺭﻫﺎﻱ ﻧﺮﻡ ﺍﻓﺰﺍﺭﻱ ﻭ ﺳـﺨﺖ ﺍﻓـﺰﺍﺭﻱ، ﺧـﺪﻣﺎﺕﺭﺳـﺎﻧﻲ ﺑﻬﺘﺮﻱ ﺩﺭ ﻣﻮﺍﻗﻊ ﺑﺤﺮﺍﻥ ﺍﻧﺠﺎﻡ ﭘﺬﻳﺮﺩ.

ﺗﻌﺪﺍﺩ ﺯﻳﺎﺩﻱ ﺍﺯ ﺍﺑﺰﺍﺭﻫﺎﻱ ﻧـﺮﻡ ﺍﻓـﺰﺍﺭﻱ GIS ﻣﺒﻨـﺎ ﺗﻮﺳـﻂ ﺁﮊﺍﻧـﺲ ﻫـﺎﻱ ﺩﻭﻟﺘـﻲ ﺁﻣﺮﻳﻜﺎ ﺗﻮﻟﻴﺪ ﻭﺗﻮﺳﻌﻪ ﻳﺎﻓﺘﻪ ﺍﺳﺖ. ﺍﺯﺟﻤﻠﻪ ﺍﻳﻦ ﺍﺑﺰﺍﺭ ﻫﺎ ﻧـﺮﻡ ﺍﻓـﺰﺍﺭ HAZUS ﻣـﻲ ﺑﺎﺷـﺪ ﻛـﻪ ﺗﻮﺳـﻂ ﺁﮊﺍﻧـﺲ ﻓـﺪﺭﺍﻝ ﻣﺪﻳﺮﻳﺖ ﺍﺿﻄﺮﺍﺭﻱ ( FEMA ) ﺩﺭ ﺍﻳﺎﻻﺕ ﻣﺘﺤﺪﻩ ﺁﻣﺮﻳﻜﺎ ﺗﻮﻟﻴﺪ ﺷﺪﻩ ﺍﺳﺖ. ﺍﻳﻦ ﻧﺮﻡ ﺍﻓﺰﺍﺭ ﺩﺭ ﻣﺤﻴﻂ GIS ﺑﺮﺍﻱ ﻛﺎﻫﺶ ﺍﺛﺮﺍﺕ ﺣﻮﺍﺩﺙ ﻭ ﺑﺮﺁﻭﺭﺩ ﻣﻴﺰﺍﻥ ﺧﺴﺎﺭﺕ ﻃﺮﺍﺣﻲ ﺷﺪﻩ ﺍﺳﺖ .

ﻧﺮﻡﺍﻓﺰﺍﺭ GIS ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺍﻃﻼﻋﺎﺗﻲ ﻧﻈﻴﺮ ﻣﻘﺎﻭﻣـﺖ ﺳـﺎﺧﺘﻤﺎﻧﻬﺎ، ﺟـﻨﺲ ﺯﻣـﻴﻦ، ﻛـﺎﻧﻮﻥ ﻭ ﺑﺰﺭﮔـﻲ ﺯﻟﺰﻟـﻪ، ﺩﺍﺩﻩﻫـﺎﻱ ﺁﻣﺎﺭﻱ ﺑﻪ ﺍﺭﺯﻳﺎﺑﻲ ﺧﺴﺎﺭﺍﺕ ﻭﺍﺭﺩﻩ ﺍﺯ ﻗﺒﻴﻞ ﺗﺨﻤﻴﻦ ﺗﻌﺪﺍﺩ ﺳﺎﺧﺘﻤﺎﻥﻫﺎﻱ ﺁﺳﻴﺐ ﺩﻳـﺪﻩ ﻭ ﻣﺠـﺮﻭﺣﻴﻦ، ﻣﻴـﺰﺍﻥ ﺗﺨﺮﻳـﺐ ﺳﻴﺴﺘﻢ ﺣﻤﻞ ﻭ ﻧﻘﻞ ﻭ ﺗﺎﺳﻴﺴﺎﺕ ﺯﻳﺮﺑﻨﺎﺋﻲ ﻣﻲﭘﺮﺩﺍﺯﺩ .