بایگانی برچسب: s

آوردن تجزیه و تحلیل فضایی داده های بزرگ به ابر

به دلیل اندازه آن، ذخیره داده های بزرگ (BIG DATA) با استفاده از نرم افزارهای سنتی پردازش داده ها دشوار و پردازش آنها پیچیده است. به جای انتقال داده های بزرگ به محیط های محاسباتی تخصصی، سازمان ها معمولاً این داده ها را در ابرهای مدیریت شده ذخیره و تجزیه و تحلیل می کنند.

ArcGIS GeoAnalytics Engine قدرت قابلیت‌های تجزیه و تحلیل فضایی Esri را به جایی می‌آورد که داده‌های بزرگ (BIG DATA) مبتنی بر ابر سازمان‌ها زندگی می‌کنند: در دریاچه‌های داده، انبارهای داده و پایگاه‌های داده. محیط های ابری پشتیبانی شده عبارتند از Microsoft Azure Synapse Analytics، Amazon EMR و Google Cloud Dataproc.

با استفاده از ابزار تجزیه و تحلیل Find Hot Spots در ArcGIS GeoAnalytics Engine، دانشمندان داده 16 میلیارد رکورد تلفن همراه را پردازش کردند تا الگوهای قدرت سیگنال سلولی را در سراسر ایالات متحده ایجاد کنند. (داده های Cell Analytics با رضایت قبلی Ookla، تکثیر، تجزیه و تحلیل و منتشر شد.)

دانشمندان داده و تحلیلگران GIS مستقیماً از داخل Apache Spark، موتور پردازش داده در مقیاس بزرگ که برای تجزیه و تحلیل داده های بزرگ(BIG DATA) طراحی شده است، به GeoAnalytics Engine دسترسی دارند. این باعث می‌شود که تجزیه و تحلیل فضایی روی داده‌های بزرگ(BIG DATA) سریع‌تر و کارآمدتر شود در حالی که فراتر از اصول اولیه است.

انجام تجزیه و تحلیل در جایی که داده ها ذخیره می شوند

در گذشته، داده ها باید به جایی منتقل می شدند که تجزیه و تحلیل در دسترس بود، معمولاً در محیط های تحلیل تخصصی. اما انتقال داده های انبوه هزینه زیادی دارد و زمان بر است و سیلوهای داده را ایجاد می کند.

اساساً به همین دلیل است که دانشمندان داده Spark – یک موتور تجزیه و تحلیل منبع باز که برای پردازش مقادیر زیادی داده استفاده می شود – به عنوان محیط کلان داده انتخابی خود انتخاب کردند. از محاسبات خوشه‌ای برای افزایش سرعت پردازش داده‌های بزرگ (BIG DATA) استفاده می‌کند در حالی که میزبان کتابخانه‌های مختلف توابع تحلیلی است که مستقیماً به داده‌هایی که در آن ذخیره می‌شوند تحویل داده می‌شوند.

GeoAnalytics Engine بومی Spark است، بنابراین از قدرت محاسباتی Spark استفاده می کند و در عین حال حجم عظیمی از داده های مکانی را به سرعت پردازش می کند. بدون GeoAnalytics Engine، پردازش مجموعه داده های بزرگ (BIG DATA) می تواند ساعت ها یا حتی روزها طول بکشد. اما تست بنچمارک انجام شده توسط Esri نشان می‌دهد که عملکرد GeoAnalytics Engine 10 تا 100 برابر سریع‌تر از سایر گزینه‌های تحلیل فضایی منبع باز است.

پردازش 16 میلیارد رکورد در پنج دقیقه

سازمان‌های دولتی و سازمان‌های تجاری اغلب با ده‌ها میلیارد رکورد کار می‌کنند تا اطلاعات عملی را از داده‌ها به دست آورند. به عنوان مثال، داده های پوشش شبکه سلولی بسیار زیاد است و اگر تجزیه و تحلیل فضایی مناسب روی آن اعمال شود، می تواند اطلاعات زیادی را نشان دهد.

استفاده‌های واقعی از داده‌های پوشش سلولی ناشناس شامل تعیین مکان‌های پوشش رضایت‌بخش یا نامطلوب شبکه‌های تلفن همراه و یافتن تعداد افراد در یک سایت خاص برای مدت زمان خاص است. Cell Analytics، از شریک Esri Ookla، داده های بزرگی را در مورد نحوه عملکرد شبکه های سلولی در سراسر جهان هر روز جمع آوری می کند.

با استفاده از مجموعه داده ای از حدود 16 میلیارد رکورد غیرشخصی از Cell Analytics (مجموعه داده پوشش سلولی از Speedtest)، تیمی از دانشمندان داده در Esri از ابزارهای Find Hot Spots و Find Dwell Locations در GeoAnalytics Engine برای شناسایی الگوهای قدرت سیگنال سلولی و انسان استفاده کردند. حضور و تحرک استخراج، تبدیل، بارگذاری و تجزیه و تحلیل 16 میلیارد رکورد کمتر از پنج دقیقه طول کشید. سپس این تیم توانست به سرعت داشبوردهای تعاملی، برنامه های وب و موبایل، داستان های مبتنی بر نقشه و مدل های تحلیلی بسازد تا اطلاعات عملی را با سهامداران به اشتراک بگذارد.

در این سناریو، اگر دانشمندان داده از بسته‌های تحلیل فضایی سنتی استفاده می‌کردند، باید داده‌ها را به صورت جغرافیایی فهرست‌بندی می‌کردند که زمان قابل‌توجهی را می‌طلبد. GeoAnalytics Engine به کاربران این امکان را می‌دهد که از آن مرحله بگذرند و داده‌های مکانی را فوراً به کار گیرند و فرآیند رسیدن از داده‌های خام به نتایج عملی را ساده‌تر کند.

این بدان معنی است که تجزیه و تحلیل داده ها می تواند بلافاصله شروع شود. کاربران می توانند به جای از دست دادن زمان ارزشمند برای جابجایی و آماده سازی داده ها، بر پشتیبانی از ماموریت در دست تمرکز کنند. و پس از تولید، نتایج تجزیه و تحلیل به راحتی قابل ارتباط است تا ذینفعان بتوانند عمل کنند.

BIG DATA
یک نقشه هگزبین، خوشه هایی از 311 تماس و زمان پاسخ را نشان می دهد. سطل‌های تاریک‌تر مناطقی را نشان می‌دهند که کمک تماس با 311 کارآمدی کمتری داشت. (داده ها توسط شهر نیویورک ارائه شده است.)

دیدن تصویر کامل

GeoAnalytics Engine کاربران را قادر می سازد تا تحلیل های جامعی از موقعیت های خاص ایجاد کنند. دارای کتابخانه ای از بیش از 120 توابع و ابزار تجزیه و تحلیل – از ابزارهای تبدیل ساده و تجمیع فضایی تا الگوریتم های آماری پیشرفته که در بسته های منبع باز موجود نیستند – در یک گردش کار استاندارد تجزیه و تحلیل کلان داده ها. بنابراین، دانشمندان داده و تحلیلگران GIS دیگر مجبور نیستند بسته های تجزیه و تحلیل فضایی را با هم وصله کنند تا تصویر کاملی از یک موقعیت بدست آورند.

برای انجام تجزیه و تحلیل کامل تصویر با GeoAnalytics Engine، دانشمندان داده در Esri اطلاعات عمومی را از وب‌سایت داده‌های باز شهر نیویورک به‌دست آوردند تا ببینند که در کجا شکایت‌های نویز در تعداد زیاد رخ می‌دهد. مقامات شهری می‌توانند از نتایج تحلیلی مانند این برای شناسایی مکان‌هایی که نیاز به استفاده از منابع دستکاری نویز بیشتری دارد استفاده کنند.

در نیویورک، ساکنان می‌توانند با مرکز خدمات مشتریان 311 شهر تماس بگیرند یا پیامی ارسال کنند تا شکایت‌های صوتی را مطرح کنند (و به سایر خدمات شهری غیر اضطراری دسترسی پیدا کنند). تیم Esri برای انجام تجزیه و تحلیل، 27 میلیون پرونده شکایت نویز را برای یک دوره 10 ساله به دست آورد.

اگر اعضای تیم برای پاسخ دادن به سؤال اصلی خود به تجزیه و تحلیل سنتی متکی بودند، می توانستند از داده های 311 برای تعیین اینکه آیا شکایات نویز افزایش یافته، کاهش یافته یا ثابت مانده اند استفاده می کردند، اما یافتن اینکه کجاست بسیار دشوارتر بود. و اینکه شکایات چه زمانی رخ داده است و چه مدت طول کشیده است تا به آنها پاسخ داده شود. اینجاست که تحلیل فضایی وارد می‌شود.

با استفاده از GeoAnalytics Engine برای پردازش داده‌ها، تیم یک نقشه هگزبین ایجاد کرد تا خوشه‌هایی از 311 شکایت نویز را به همراه زمان‌های پاسخ مربوط به آنها نشان دهد. سطل‌های تیره‌تر روی نقشه، مناطقی را نشان می‌دهند که پاسخگویی مقامات شهری به شکایات مربوط به سر و صدا بیشتر طول می‌کشد که نشان‌دهنده کارآمدی کمتر خدمات 311 است.

ادامه به تکامل تجزیه و تحلیل فضایی کلان داده(BIG DATA)

از آنجایی که سازمان‌ها حجم بیشتری از داده‌های مکانی را به دست می‌آورند که نیاز به پردازش و تجزیه و تحلیل دارند، قابلیت‌های GeoAnalytics Engine همچنان به رشد خود ادامه می‌دهند. نسخه‌های آینده بر افزودن ابزارها و توابع، پیشبرد نحوه ورود و به اشتراک‌گذاری داده‌ها از موتور GeoAnalytics و افزایش قابلیت‌های تجسم تمرکز خواهند کرد.

(BIG DATA) (BIG DATA) (BIG DATA) (BIG DATA) (BIG DATA) (BIG DATA) (BIG DATA) (BIG DATA) (BIG DATA) (BIG DATA) (BIG DATA)

بیشتر بدانید

با ArcGIS GeoAnalytics Engine شروع کنید.

راه های جدید برای دسترسی به BIG DATA در فضای ابری

راه های جدید برای دسترسی به BIG DATA در فضای ابری – از آنجایی که سازمان‌ها به ذخیره‌سازی بیشتری برای داده‌های خود نیاز دارند، فناوری‌های ذخیره‌سازی داده‌ها باید برای حفظ و پردازش کافی داده‌ها سازگار شوند. انبارهای داده ابری این کار را انجام می دهند و دسترسی و پردازش داده هایی مانند اطلاعات نقطه فروش، داده های تله متری از حسگرها و سرنخ های فروش تولید شده توسط وب سایت ها را آسان تر می کنند. برای کاربران Esri، ArcGIS Pro 2.9 (و جدیدتر) و ArcGIS Enterprise 10.9.1 (و جدیدتر) از اتصال به انبارهای داده ابری و انتشار آن داده ها پشتیبانی می کنند.

مزایای انبارهای داده ابری

هر کسی که با جریان های ثابت داده کار می کند – چه فهرست نویسی تراکنش های فروش برای فروشگاه های زنجیره ای مواد غذایی یا ردیابی داده های تولید شده توسط ناوگان کامیون های حمل و نقل – به یک راه حل ذخیره سازی داده نیاز دارد که بتواند با دریافت های عظیم داده های ساخت یافته همگام شود.

پایگاه داده های سنتی ممکن است در هنگام ارائه این داده ها به مخاطبان گسترده با چالش هایی مواجه شوند. اگر داده ها در محل ذخیره شوند، یک استقرار موجود احتمالاً نیاز به افزایش مقیاس دارد که هزینه قابل توجهی دارد. اگر یک مجموعه داده به عنوان منبعی برای برنامه‌ای که در سراسر جهان در دسترس است استفاده شود، دسترسی به داده‌ها در آن مقیاس به یک چالش مهم تبدیل می‌شود.

راه های جدید برای دسترسی به BIG DATA در فضای ابری
هنگامی که داده های ساختاریافته از منابع مختلف در یک انبار داده ابری ذخیره می شود، کاربران ArcGIS Pro 2.9 (و جدیدتر) و ArcGIS Enterprise 10.9.1 (و جدیدتر) می توانند این داده ها را به عنوان لایه های تصویر نقشه منتشر کنند.

انبارهای داده ابری مزایای متعددی نسبت به سایر اشکال ذخیره سازی داده های ساخت یافته دارند، از جمله موارد زیر:

  • هزینه کل مالکیت کمتر: انبارهای داده ابری در زیرساخت هایی قرار دارند که توسط یک مرکز داده نگهداری می شود. این امر هزینه های راه اندازی و نگهداری سخت افزار و شبکه مورد نیاز را کاهش می دهد.
  • سرعت و عملکرد بهبود یافته: برخلاف راه‌حل‌های سنتی داده‌های ساختاریافته، انبارهای داده ابری به طور سیستماتیک با در نظر گرفتن دسترسی به داده‌ها مهندسی می‌شوند. چندین سرور برای متعادل سازی بار بهینه پیاده سازی شده اند که منجر به کارایی بیشتر در هنگام بازیابی داده ها می شود.

دسترسی و ادغام بهتر داده ها: یک مزیت مشترک کار در فضای ابری، توانایی در دسترس قرار دادن خدمات و داده ها در چندین منطقه است. این یک قابلیت مهم انبارهای داده ابری است زیرا آنها به طور مداوم داده ها را در سراسر جهان سرویس می دهند.

مقیاس پذیری و کشش: مطابق با سایر سرویس های مبتنی بر ابر، انبارهای داده ابری می توانند به طور نامحدود برای رفع نیازهای کاربران مقیاس شوند.

نحوه دسترسی به داده های ذخیره شده در انبار داده ابری

توانایی اتصال و استفاده از داده‌ها از انبارهای داده ابری در ArcGIS Pro 2.9 و ArcGIS Enterprise 10.9.1 در ویندوز، لینوکس و Kubernetes پیاده‌سازی شد. این نرم افزار از اتصال به سه انبار داده ابری پشتیبانی می کند: Google BigQuery، Snowflake و Amazon Redshift.

افزودن این داده ها به ArcGIS Pro مانند افزودن داده از هر پایگاه داده دیگری است. یکی از چالش های اصلی کار با انبارهای داده ابری، دسترسی است. دسترسی به داده‌های ذخیره‌شده در انبارهای داده ابری هزینه‌ای دارد، چیزی که توسعه‌دهندگان باید هنگام ساختن نقشه‌های وب یا برنامه‌هایی که بر این داده‌ها تکیه می‌کنند، در نظر داشته باشند.

برای متعادل کردن هزینه و دسترسی، ناشران داده می توانند داده ها را از انبارهای داده ابری به ArcGIS Enterprise به عنوان خدمات نقشه منتشر کنند. سه راه برای انجام این کار وجود دارد که بر اساس تعداد دفعات نیاز کاربران به بازیابی داده های ذخیره شده در انبارهای داده ابری است:

دسترسی مستقیم به داده‌ها: بازیابی داده‌های ذخیره‌شده در انبار داده‌های ابری راهی عالی برای ناشران داده است تا نحوه رفتار داده‌های ساختاریافته و نیمه‌ساختار یافته با سایر گردش‌های کاری را آزمایش کنند. هنگامی که آنها یک لایه تصویر نقشه را منتشر می کنند، به طور مستقیم به انبار داده ارجاع می دهد و در صورت نیاز برای انجام درخواست ها، داده ها را پرس و جو می کند. با توجه به هزینه های مربوط به بازیابی داده ها، این گردش کار باید فقط برای مجموعه داده های کوچکتر یا زمانی که به روزترین داده مورد نیاز است در نظر گرفته شود.

دسترسی به داده‌ها از طریق یک عکس فوری: هنگام انتشار داده‌ها در انبار داده ابری به‌عنوان عکس فوری، داده‌هایی که در انبار داده ابری ذخیره می‌شوند در فروشگاه داده ArcGIS کپی می‌شوند. هنگامی که یک لایه تصویر نقشه نیاز به بازیابی داده ها دارد، به جای اینکه در انبار داده ابری، به مکانی در ArcGIS Data Store اشاره می کند. این پیکربندی به سازمان‌ها اجازه می‌دهد تا از هزینه‌های مرتبط با دسترسی مستقیم به داده‌ها در انبار داده ابری اجتناب کنند.

با این حال، به خاطر داشته باشید که به‌روزرسانی‌های ایجاد شده در سطح انبار داده ابری به‌طور خودکار روی عکس فوری اعمال نمی‌شوند. برای اطمینان از انجام به‌روزرسانی‌ها، ناشران داده باید به‌روزرسانی‌های درخواستی را در پورتال ArcGIS Enterprise انجام دهند.

دسترسی به داده ها از طریق نمای مادی شده: این روش دسترسی به داده ها در انبار داده ابری از لایه های پرس و جو در ArcGIS Pro پشتیبانی می کند. در یک نمای تحقق یافته، درخواست‌ها برای بازیابی داده‌ها همچنان مستقیماً به انبار داده ابری ارسال می‌شوند، اما نه در برابر خود داده‌ها. درعوض، درخواست‌ها به یک پرس‌وجوی ذخیره‌شده مناسب در انبار داده ابری ارسال می‌شوند.

این یک گزینه میان راه برای ناشران داده است که به به روزترین داده ها در زیرمجموعه ای کاملاً تعریف شده از کل مجموعه داده نیاز دارند. برنامه‌هایی که به عملکرد سریع‌تر پرس و جو نیاز دارند، برخلاف عملکرد طراحی سریع‌تر، باید از نماهای واقعی روی عکس‌های فوری استفاده کنند.

همگام با تکامل داده های بزرگ

  • همانطور که بسیاری از جهان به سمت پذیرش گسترده‌تر فناوری اینترنت اشیا (IoT) و وب 3.0 حرکت می‌کنند، میزان داده‌های تولید شده تنها به افزایش مقیاس ادامه خواهد داد. انبارهای داده ابری استانداردی است که برای کاربرانی که با حجم عظیمی از داده های ساختاریافته کار می کنند، پذیرفته شده است.
  • ArcGIS Pro 2.9 (و جدیدتر) و ArcGIS Enterprise 10.9.1 (و جدیدتر) راه های مختلفی برای دسترسی به داده ها در انبارهای داده ابری ارائه می دهند که به کاربران امکان می دهد آسانتر و مقرون به صرفه تر کاوش، تجسم و به اشتراک گذاری حجم زیادی از ساختار یافته را داشته باشند. داده ها.

برای کسب اطلاعات بیشتر در مورد نحوه پشتیبانی Esri از اتصال به انبارهای داده ابری، پست های وبلاگ زیر را در بلاگ ArcGIS بخوانید: