مدل یادگیری عمیق پتانسیل توسعه انرژی خورشیدی را باز می کند

انرژی خورشیدی فرصتی عظیم برای تولید انرژی پایدار و سبز است. تحقق پتانسیل کامل آن مستلزم شناسایی مکان های مناسب برای نصب پنل های خورشیدی است. Pivot Energy ، یک تامین کننده ملی انرژی های تجدیدپذیر که دفتر مرکزی آن در کلرادو قرار دارد، برای مکان یابی پارکینگ ها در مناطق مختلف مورد علاقه که برای اجرای پنل های خورشیدی بالقوه مناسب هستند، به کمک نیاز داشت. 

با استفاده از فناوری پیشرفته GIS، تیمی از شریک Esri Platte River Analytics به Pivot Energy کمک کرد تا این کار را به طور دقیق و کارآمد انجام دهد. با استفاده از یک مدل یادگیری عمیق از Esri، تیم Platte River Analytics سطوح پارکینگ را از تصاویر با وضوح بالا استخراج کردند. سپس تیم از ابزارهای ژئوپردازش در ArcGIS Pro برای انجام اندازه‌گیری‌ها و محاسبات دقیق‌تر سایت‌های بالقوه استفاده کرد.

نتایج این تجزیه و تحلیل اطلاعات ارزشمندی را در اختیار Pivot Energy قرار داد و کارکنان را برای تصمیم‌گیری مبتنی بر داده‌ها و برنامه‌ریزی موثرتر تلاش‌های پذیرش انرژی خورشیدی توانمند کرد.

تصویری هوایی از یک شهر که برخی از بخش‌های آن به رنگ بنفش سایه انداخته شده است
مدل یادگیری عمیق پتانسیل توسعه انرژی خورشیدی را باز می کند
این تیم با استفاده از طبقه‌بندی پارکینگ‌های Esri – مدل یادگیری عمیق ایالات متحده در ArcGIS Pro، مطالعه آزمایشی استخراج پارکینگ در گلدن، کلرادو را انجام داد.

مزایای توسعه خورشیدی مبتنی بر پارکینگ

پارکینگ ها فضای قابل توجه و در عین حال کم استفاده ای را برای توسعه انرژی خورشیدی ارائه می دهند. آنها دارای ویژگی های کلیدی هستند که آنها را برای تولید انرژی خورشیدی ایده آل می کند، مانند سطح وسیع، قرار گرفتن بدون مانع در معرض نور خورشید و نزدیکی به اتصالات زیرساخت های الکتریکی. علاوه بر این، پارکینگ‌های آسفالت‌شده معمولاً دارای شیب بسیار کم هستند، برای زهکشی طراحی شده‌اند، با سایر کاربری‌ها رقابت نمی‌کنند و همیشه در استفاده کامل نیستند.

پارکینگ های خورشیدی می توانند مزایای زیست محیطی و اقتصادی متعددی را برای مالکان و جوامع فراهم کنند. آنها را می توان به سرعت به ایستگاه های شارژ وسایل نقلیه الکتریکی (EV) مجهز کرد. این نه تنها به خودروهای برقی امکان می‌دهد مستقیماً با انرژی تولید شده از خورشید تغذیه شوند و حمل‌ونقل پاک را ترویج می‌کنند، بلکه هزینه‌های برق را برای مالکان و اپراتورها کاهش می‌دهد و راه‌هایی را برای درآمدزایی بالقوه از طریق فروش انرژی باز می‌کند. علاوه بر این، ارائه شارژ EV به مشتریان، صاحبان خودروهایی را جذب می‌کند که در حین شارژ کردن وسایل نقلیه خود در منطقه هزینه می‌کنند.

همه اینها دلایلی هستند که چرا Pivot Energy نیاز به جست و جوی پارکینگ ها در سراسر ساحل شرقی و در نهایت کشور را دید تا ببیند کدام یک برای توسعه انرژی خورشیدی ایده آل هستند.

روشی سریع و خودکار برای تشخیص پارکینگ های مناسب

برای خودکارسازی تشخیص پارکینگ‌ها در مناطق مورد علاقه Pivot Energy، تیم Platte River Analytics بر طبقه‌بندی پارکینگ‌های Esri – مدل یادگیری عمیق ایالات متحده، که در ArcGIS Living Atlas of the World موجود است، تکیه کردند.

این مدل از پیش ساخته شده توسط تیم تجزیه و تحلیل Esri توسعه یافته است، برای شناسایی پارکینگ ها در تصاویر منطقه ای منبع آموزش داده شده است. مانند بیش از 65 مدل یادگیری عمیق دیگر که تیم تجزیه و تحلیل Esri برای شناسایی اشیاء از مهر و موم های قطب شمال گرفته تا خطوط برق ایجاد کرده است، مدل طبقه بندی پارکینگ ها – ایالات متحده به طور خودکار دارایی ها را از تصاویر استخراج می کند بدون اینکه کاربران مجبور به سرمایه گذاری زمان یا هزینه برای آموزش باشند. داده ها یا پرسنل

برای این پروژه، تیم Platte River Analytics نیاز به استفاده از داده‌های زیرمتری با کیفیت بالا داشت که به مدل اجازه می‌داد ویژگی‌های زمین را به جزییات پارکینگ شناسایی و تجزیه و تحلیل کند. این تیم تصاویر برنامه ملی تصویربرداری کشاورزی (NAIP) با وضوح یک متر را از برنامه وب EarthExplorer سازمان زمین شناسی ایالات متحده به دست آورد. تصاویر موجود در این برنامه توسط وزارت کشاورزی ایالات متحده در طول فصول رشد کشاورزی از سال 2003 تا کنون به دست آمده است.

پس از دانلود تصاویر NAIP، تیم Platte River Analytics به طور یکپارچه مدل یادگیری عمیق را در گردش کار ArcGIS Pro خود ادغام کرد. این تیم تصاویر را با این مدل پردازش کرد که به طور خودکار پارکینگ ها را در ده ها منطقه مورد علاقه Pivot Energy شناسایی کرد.

استفاده از مدل آسان بود. منطقه مورد علاقه اولیه که تیم بررسی کرد اندازه یک شهر بزرگ ایالات متحده بود و کمتر از 12 ساعت طول کشید تا هم تصاویر را دانلود کرد و هم در ArcGIS Pro پردازش کرد.

برای تجزیه و تحلیل بیشتر پارکینگ های شناسایی شده، تیم Platte River Analytics از ابزار ژئوپردازش Raster به Polygon در ArcGIS Pro برای تبدیل خروجی های شطرنجی به چند ضلعی استفاده کرد. این تیم را قادر ساخت تا اندازه‌گیری‌های دقیق‌تری را به دست آورد و اندازه هر لات را محاسبه کند و اطلاعات ارزشمندی را در اختیار Pivot Energy قرار دهد تا کارکنان بتوانند ارزیابی‌های امکان‌سنجی را آغاز کنند و برنامه‌ریزی پروژه را آغاز کنند.

از آنجا، تیم GIS در Pivot Energy قادر به مطالعه عوامل نظارتی – مانند دشت‌های سیلابی، پوشش درختان، تالاب‌ها، و مسیرهای مهاجرت حیات وحش – در اطراف پارکینگ‌هایی بود که در ابتدا برای توسعه خورشیدی قابل قبول تلقی می‌شدند.

صرفه جویی در ده ها ساعت کار دستی در هفته

اتخاذ رویکرد مبتنی بر یادگیری ماشین برای یافتن پارکینگ‌های مناسب برای نصب پنل‌های خورشیدی، کارکنان Pivot Energy را قادر می‌سازد تا تصمیمات آگاهانه‌ای را در مورد اینکه کدام مناطق و پارکینگ‌های خاص می‌توانند برای این کار مفید باشند، اتخاذ کنند. با استفاده از GIS پیشرفته برای ارزیابی مکان‌ها و اندازه‌های پارکینگ، توسعه‌دهنده می‌تواند برنامه‌ریزی پروژه را بهینه کند، حداکثر ظرفیت تولید انرژی را تضمین کند و نصب زیرساخت‌های خورشیدی را سرعت بخشد.

به گفته ریچل مید، مدیر GIS در Pivot Energy، فرآیندی که تیم Platte River Analytics برای استخراج پارکینگ‌ها از تصاویر استفاده کرد، باعث شد تیم او بیش از 20 ساعت در هفته از جستجوی دستی تصاویر هوایی برای – و دیجیتالی کردن پارکینگ‌ها در سراسر – صرفه‌جویی کند. مناطق مورد علاقه این شرکت که در سراسر ایالات متحده امتداد دارند.

او گفت: “دسترسی به مدل های یادگیری عمیق ارائه شده توسط Esri باعث صرفه جویی در زمان شده است.” با خودکار کردن این … ما می توانیم ده ها ساعت در هفته صرفه جویی کنیم و آن زمان را مجدداً با پروژه های دیگر تنظیم کنیم.

دیدگاهتان را بنویسید لغو پاسخ